
ACHIEVEMENTS & NEW CHALLENGES FOR CERN'S DIGITAL LLRF FAMILY

LLRF19 Workshop, Chicago, 29 September – 3 October 2019

- * CERN VXS DLLRF overview
- ✤ LEIR DLLRF
 - □ Overview
 - □ Selected achievements

✤ PSB DLLRF

- Overview
- Selected achievements
- New challenges

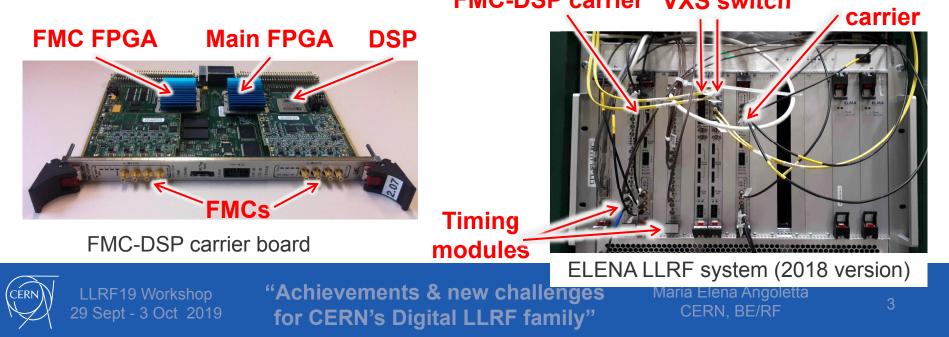
✤ ELENA DLLRF

- Overview
- Selected achievements
- □ New challenges
- * CONCLUSIONS

LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Materials

CERN

"Achievements & new challenges for CERN's Digital LLRF family"


p (protons)

CERN VXS DLLRF overview

- ✤ VXS (a.k.a. 2nd generation) DLLRF: big RF group investment (manpower).
- Deployed on small CERN machines + medical machine (MedAustron).
- Used also for longitudinal diagnostics (RF) + orbit systems (BI).

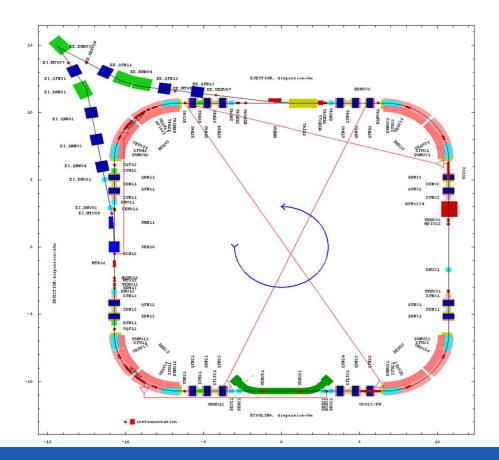
Features:

- Direct RF sampling, baseband [I,Q] processing.
- □ VXS crate, FMC-DSP carrier board, 3 HPC FMC types (function: MDDS, DDC, SDDS).
- □ Initially clocked with sweeping clock. Now mostly fixed-frequency clock (→ J. Molendijk's talk @LLRF17).
 FMC-DSP carrier VXS switch

VXS DLLRF deployment – past&future

When	What	Who	
2014	MedAustron LLRF (sweeping clock)		
	PSB 4 rings LLRF (sweeping clock)		
2016	AD orbit		
	LEIR LLRF upgrade to 2 nd generation LLRF (sweeping clock)		
2017	ELENA orbit		
	ELENA LLRF (fixed frequency clock)		
	LEIR orbit		
2018	LEIR LLRF upgrade to fixed frequency clock		
	ELENA LLRF upgrade to include (some) longitudinal diagnostics	RF	
2019	NOW – LS2		
2020	PSB LLRF upgrade to fixed frequency + Finemet control @16 h		
2020	ELENA LLRF upgrade to include full longitudinal diagnostics		
2021	AD LLRF & longitudinal diagnostics (fixed frequency clock)		
~2022	Beam loops implementation in PS LLRF (sweeping clock)		
≥ 2022	Start studies for 3 rd generation LLRF system		

LLRF19 Workshop 29 Sept - 3 Oct 2019 "Achievements & new challenges for CERN's Digital LLRF family"

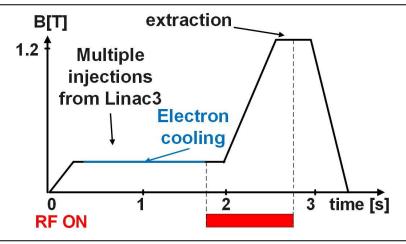


- ✤ CERN VXS DLLRF overview

✤ LEIR DLLRF

- Overview
- Selected achievements
- PSB DLLRF
 - Overview
 - Selected achievements
 - New challenges
- ELENA DLLRF
 - Overview
 - Selected achievements
 - New challenges
- CONCLUSIONS

Low Energy Ion Ring



LLRF19 Workshop 29 Sept - 3 Oct 2019 "Achievements & new challenges for CERN's Digital LLRF family"

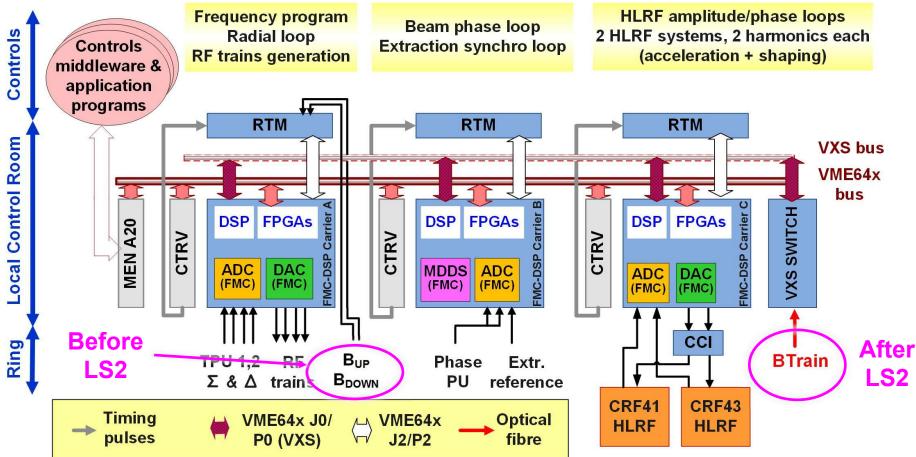
Ion accumulator + accelerator, LHC injector.

- ✤ Ions: O⁴⁺, Ar¹¹⁺, Xe³⁹⁺, Pb⁵⁴⁺
- ✤ Finemet-based HLRF (4 kV_P)

Typical NOMINAL cycle for Pb54+

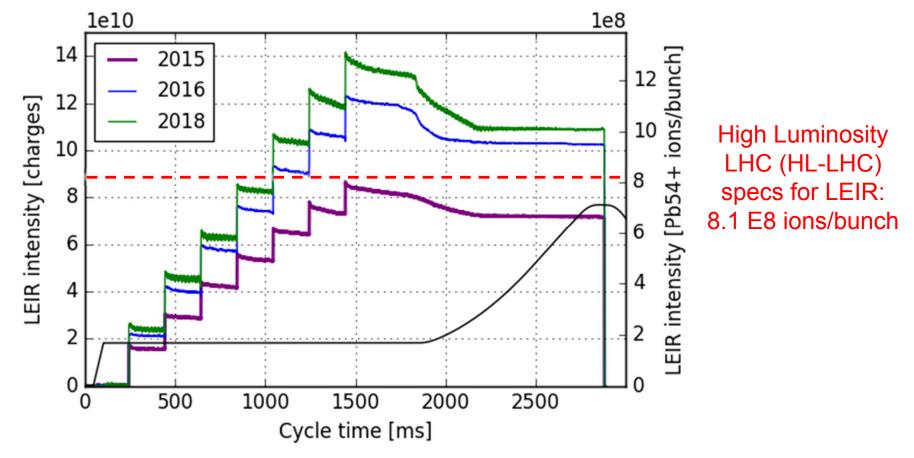
- After LS2: new Btrain measurement/distribution system
- Possible future usage: biomedical research BioLEIR (not funded yet).

Parameter		Injection	Extraction
Revolution frequency, MHz		0.361	1.423
Energy, MeV/u		4.2	72.2
EARLY	RF harmonio	c number	1
scheme	Extracted intensity, Nb ions		2.5 E8
NOMINAL	RF harmonie	c number	2+4, 3+6 ^(*)
scheme	Extracted intensity, Nb ions		10 E8
(78		
Acc	~1		


LEIR parameters for PB^{54+} ions in 2018.

(*) **3+6 operation**: novel scheme to mitigate SPS slip-stacking problems, if any. It was possible thanks to the flexibility of LLRF + wideband Finemet HLRF systems.

LLRF19 Workshop 29 Sept - 3 Oct 2019

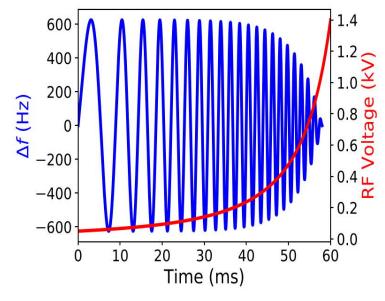


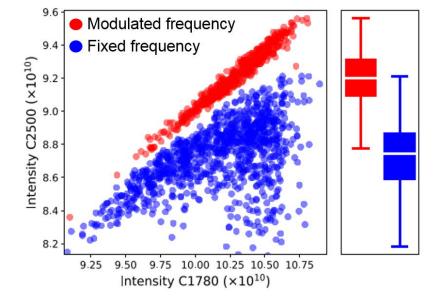
Dual-harmonic operation on same cavity (acceleration + bunch shaping).
 Double-cavity operation (MD mode)

LLRF19 Workshop 29 Sept - 3 Oct 2019 "Achievements & new challenges for CERN's Digital LLRF family"

LEIR achievement: Pb⁵⁴⁺ intensity

□ Exceptional progress on extracted beam intensity over the last 3 years
 □ LLRF instrumental to achieve this result → next slide




LLRF19 Workshop 29 Sept - 3 Oct 2019 "Achievements & new challenges for CERN's Digital LLRF family"

LEIR DLLRF achievement: freq. modulation

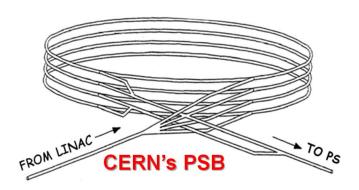
- Novel approach to capturing coasting ion beams: programmable RF frequency modulation @capture:
 - controlled blowup of longitudinal emittance
 - good reproducibility in longitudinal distribution

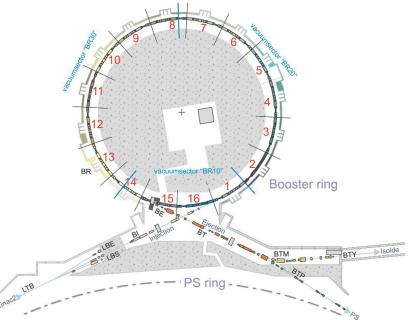
Improves beam transmission

Frequency modulation [blue] and voltage [red] at capture for a Pb⁵⁴⁺ cycle.

Intensity before extraction vs. after capture with [red] and without [blue] modulated frequency capture.

LLRF19 Workshop 29 Sept - 3 Oct 2019

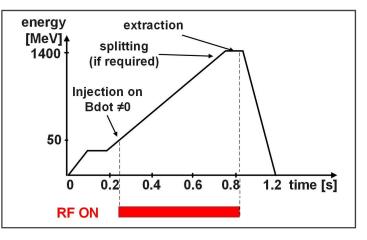

"Achievements & new challenges for CERN's Digital LLRF family"


- CERN VXS DLLRF overview
- ✤ LEIR DLLRF
 - Overview
 - Selected achievements

✤ PSB DLLRF

- □ Overview
- Selected achievements
- New challenges
- ✤ ELENA DLLRF
 - Overview
 - Selected achievements
 - New challenges
- CONCLUSIONS

Proton Synchrotron Booster


LLRF19 Workshop 29 Sept - 3 Oct 2019 "Achievements & new challenges for CERN's Digital LLRF family"

PSB: the accelerator

- Proton accelerator, 4 superposed rings
- LHC injector + supplier to experimental zone.
- Intensity/ring: 5E9 p @h=1 [LHCPROBE] to 1E13 p @h=1 [ISOLDE].
 - □ Wide range of beam intensities/parameters.
 - Beam loading can be strong.

* Deep upgrades during LS2:

- □ Injection from Linac4 (long. painting).
- □ Higher injection/extraction energies.
- New Btrain system.
- Finemet-based HLRF to replace pre-LS2 ferrite-based systems.
- LLRF system will be upgraded to operate new Finemet HLRF.

Pre-LS2 PSB typical cycle

	Energy	Revolution frequency	
Injection	160 MeV	992 kHz	
Extraction – a	1.4 GeV	1.748 MHz	
Extraction – b	2 GeV	1.807 MHz	
Circumference		157 m	
Acceleratio	n time	~600 ms	

Post-LS2 PSB parameters

LLRF19 Workshop 29 Sept - 3 Oct 2019

PSB DLLRF achievement: long. blowup

- New method deployed for controlled longitudinal blowup
- Operational (historical) method: high harmonic.
 - Single frequency sinusoidal modulation of high harmonic
 - Operational run also with Finemet test system (PSB Ring 4)
- New method: phase noise
 - "Random" phase modulation of main harmonic
 - Successful operational run in 2018
- After LS2 both methods will be used operationally

High harmonic

- + Easy to track changing f_S
- + Faster
- Requires control of high h
- Minimum of 5D parameter space

Phase noise -

- + No need for high h control
- + Smaller parameter space
- Targets specific synchrotron amplitudes
- Slower

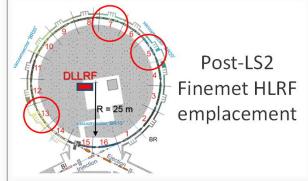
LLRF19 Workshop 29 Sept - 3 Oct 2019

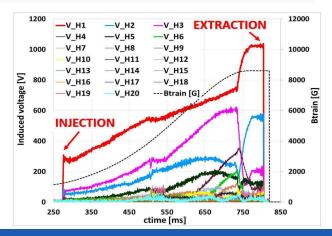
PSB: post-LS2 DLLRF challenges

- Existing DLLRF systems to be profoundly upgraded for post-LS2 operation
 - □ Finemet HLRF test system in PSB Ring 4 since 2011
 - Several reliability runs carried out pre-LS2

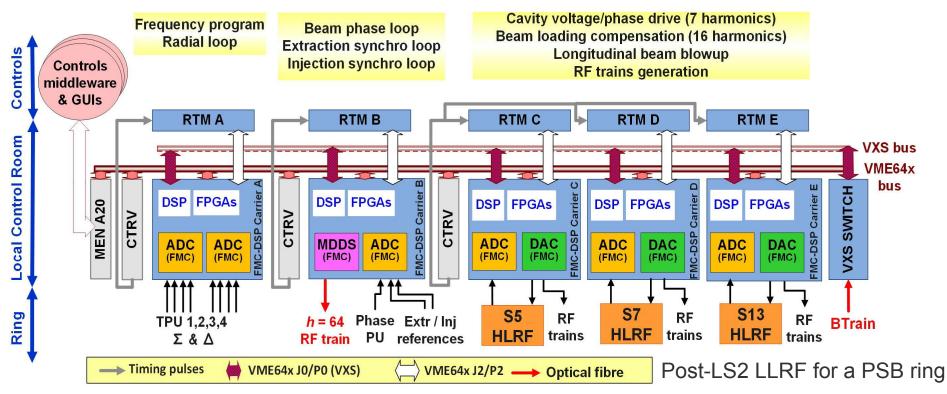
* Distributed cavity concept

- **HLRF**: 3 systems/ring, 8 kV each, [1-20 MHz] BW.
- What: voltage @same h balanced over the 3 HLRF systems. Wide frequency swing → challenging!
- Aim: optimal power management + HLRF virtually never down.
- **Cost**: higher LLRF complexity


Voltage control & beam loading compensation


- Beam loading compensation @16 h
- Operation: voltage/phase control @4 h
- MDs: additional voltage/phase control @3 h

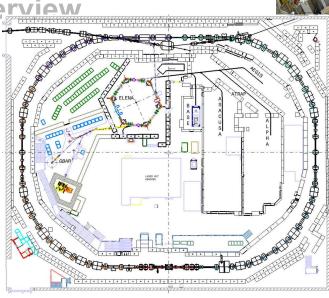
Voltage induced @h = 1.. 20 by 800 E10 p beam

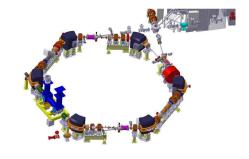


LLRF19 Workshop 29 Sept - 3 Oct 2019 "Achievements & new challenges for CERN's Digital LLRF family"

PSB: post-LS2 DLLRF

- ✤ 5 FMC-DSP carrier boards vs. 3 boards for pre-LS2 system
- ✤ Servoloops: 16 h/cavity [in FPGA].
- Extended longitudinal blowup capabilities [in FPGA]
- * Rings synchronisation with Linac4, injection into waiting bucket

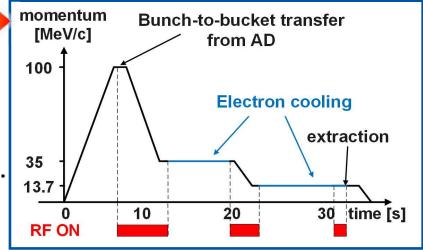

LLRF19 Workshop 29 Sept - 3 Oct 2019


- ♦ CERN VXS DLLRF overview
- ✤ LEIR DLLRF
 - Overview
 - Selected achievements
- PSB DLLRF
 - Overview
 - Selected achievements
 - New challenges

✤ ELENA DLLRF

- Overview
- Selected achievements
- New challenges
- CONCLUSIONS

Extra Low ENergy Antiproton Ring



LLRF19 Workshop 29 Sept - 3 Oct 2019 "Achievements & new challenges for CERN's Digital LLRF family"

ELENA: the decelerator

- Standard operation: deceleration of antiprotons (pbars) from AD.
- Setup: acceleration/deceleration of H⁻ ions/protons from source.
- Under commissioning (started 12/2016).
 Already provided slow pbars to GBAR
- Finemet-based HLRF (500 Vp)
- So far single harmonic operation
- Double harmonic operation
 - Aim: bunch shaping @extraction
 - It might help for space charge problems in the cycle, if any.
- Bunched-beam cooling or bunch rotation @extraction for shorter bunches

ELENA cycle in 2018 for pbar operation

Parameter	Injection	Extraction
Momentum, MeV/c	100	13.7
Magnetic field, mT	359.8	49.3
Revolution frequency, kHz	1044.9	144
Circumference, m	30.4	

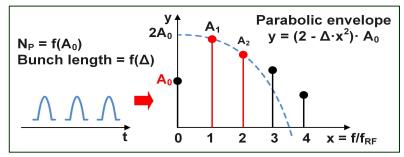
ELENA parameters for pbar operation

LLRF19 Workshop 29 Sept - 3 Oct 2019

ELENA: DLLRF (2018 version)

Frequency program

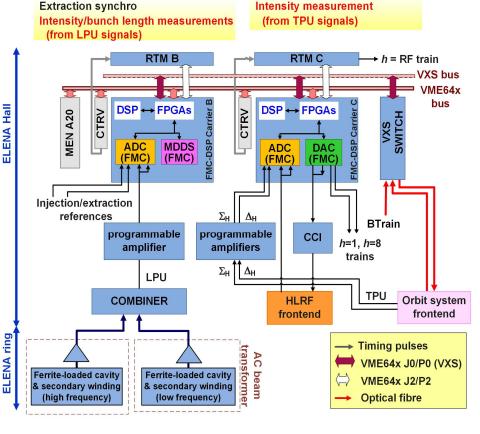
Injection synchro


Phase loop

RF segments:

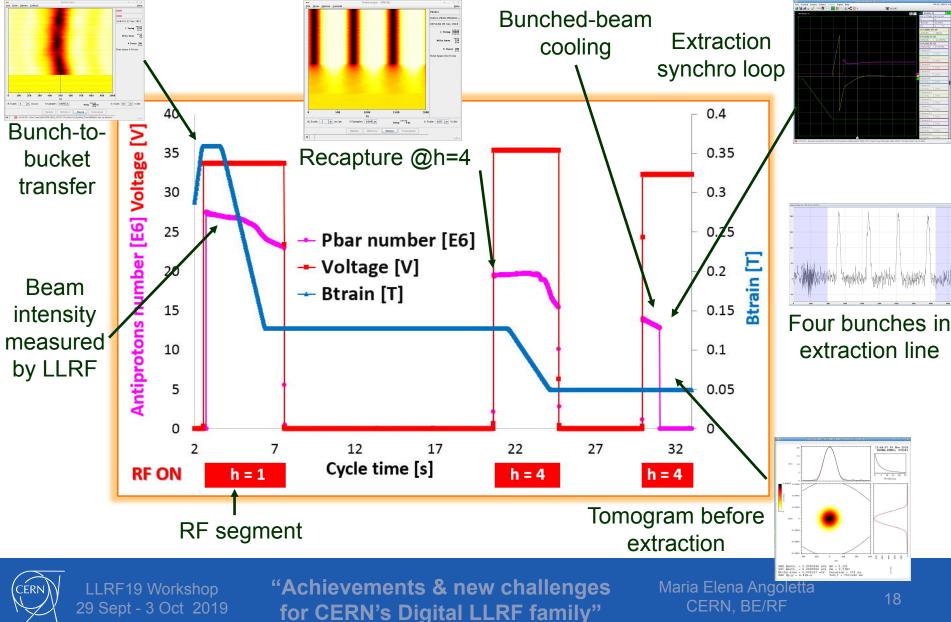
- beam bunched / debunched several times in same cycle
- $\Box \rightarrow$ cavity gap relay opened/closed

Longitudinal diagnostics


- Part of RF workpackage
- DC beam transformers do not work at ELENA's low intensity
- Dedicated data treatment deployed in LLRF to measure bunched-beam intensity + bunch length.

In-frequency bunched-beam data processing

LLRF19 Workshop 29 Sept - 3 Oct 2019 "Achievements & new challenges for CERN's Digital LLRF family" Maria Elena Angoletta CERN, BE/RF

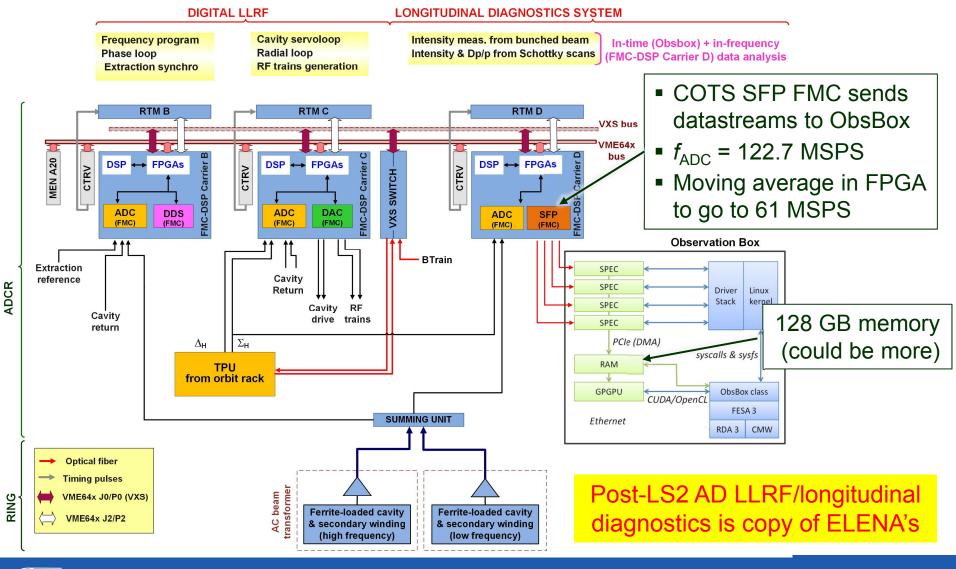

Cavity servoloop & gap control

Radial loop

RF trains generation

ELENA LLRF layout [2018 version]

ELENA DLLRF achievements with pbars



ELENA DLLRF new challenges

- Integration wit RF cycle editor (automatic control of main RF parameters)
- Longitudinal diagnostics will be expanded in 2020
 - Users: operators, RF experts + cooling experts
 - Dedicated FMC-DSP carrier hosting ADC + SFP FMCs
 - In-frequency data processing (real-time).
 - Bunched (intensity + bunch length, as in 2018) and debunched (intensity + Δp/p from Schottky scans) beam data processing.
 - Will pass to ObsBox averaged sampled data
 - Observation Box (ObsBox) sub-system
 - In-time data processing (offline).
 - Powerful standalone computer receiving input (raw data, f_{REV}, beam status) from FMC-DSP carrier over optical fibre.
- ELENA's LLRF + long. diag. to be deployed also in post-LS2 AD
- ObsBox useful to PSB, LEIR for real-time bunch length monitoring.

ELENA: LLRF + long. diag. system

LLRF19 Workshop 29 Sept - 3 Oct 2019 "Achievements & new challenges for CERN's Digital LLRF family"

- ✤ VXS DLLRF (a.k.a. CERN 2nd generation DLLRF)
 - big investment (manpower) for RF group
 - it re-paid itself well.
- Finemet HLRF favourite (although very demanding) companion
- LLRF + Finemet HLRF "ensemble" very flexible & upgradeable
 - Same building blocks applied to many machines. Synergy of algorithms, firmware/software, experience and ideas.
 - Several features (ex: new operational harmonics, frequency modulation, noise generation scheme) added although not originally planned

LLRF19 Workshop 29 Sept - 3 Oct 2019 "Achievements & new challenges for CERN's Digital LLRF family"

- Longitudinal diagnostics capabilities to be soon expanded
 - Essential for pbars machines (AD, ELENA)
 - ObxBox add-on very useful for other machines, too (bunch length meas).
- Very demanding machines restart after LS2
 - New (AD) or deeply upgraded (PSB) LLRF systems to be commissioned
 - ELENA commissioning (cont'd) and LEIR restart
 - After the post-LS2 restart marathon, we'll start studying the 3rd generation LLRF.

LLRF19 Workshop 29 Sept - 3 Oct 2019 "Achievements & new challenges for CERN's Digital LLRF family"

www.cern.ch