The Low Energy RHIC electron Cooler (LEReC) is presently being commissioned at BNL to improve the luminosity of the Relativistic Heavy Ion Collider (RHIC) at low energies. LEReC is the first RF linac-based electron cooler with bunched beam cooling. A critical beam parameter for electron cooling is the energy spread. It is desirable to minimize the energy spread to reduce the variation in the electron beam energy. This is achieved by using the RF cavities to pump the beam and control the energy spread. A 704 MHz Vertical Deflecting Cavity is used in the diagnostic beamline for measuring longitudinal energy spread. The four RF cavities in the injector and transport sections must accelerate the beam to the desired energy and also perform an RF gymnastic to reduce the energy spread. 704 MHz SRF Booster Cavity: Provides RF curvature correction to compensate macrobunch loss from the first to the last bunch of a macrobunch. It is implemented, but without correction on the DC gun, it was ineffective. A correction algorithm using the temperature controlled cables compensated for the measured drift of the loopback signals. Cable Drift: The cable route from the LEReC to the cavities in the RHIC tunnel runs outside for approximately 50 feet. An additional cable route, where the outdoor run is shorter and travels through the RHIC linac, is used. Over a longer time period, or a day with larger temperature variations, the energy drift would be worse. Energy Feedback / Active Stabilization: Energy feedback will compensate any source of error with a single correction, it is possible that the energy spread will degrade while the average energy is held constant. To mitigate against this possibility, we will have to periodically measure the beam’s longitudinal distribution in the diagnostic beamline. If necessary during the measurements, the energy spread could be corrected and the cable drift and average energy corrections reset. This procedure could be automated and executed in between RHIC physics runs. Data is sent from the electronics of one of the LLRF controllers over three dedicated unidirectional serial links. These links use 10 Mbps biphasic-mark encoding similar to the RHIC Event and Response Data links. A data sink that receives the BPM data calculates the energy and broadcasts it on the update link to other LLRF systems. The 704 MHz Warm Cavity is properly set to minimize the energy drift running in 76 kHz mode (i.e. one electron macrobunch per RHIC revolution period). The energy measurement error is typically 50 keV. Due to the busy LEReC commissioning schedule, it was difficult to find times when the electron beam ran without many configuration changes. There were a few overnight shifts where the beam was left running in 76 kHz mode (i.e. one electron macrobunch per RHIC revolution period). The energy measurement error was about 9 hours from one of these shifts is shown here. The flat part of the data (and spikes just before or after) are from periods of time when the electron beam was off. The energy drift is well correlated with the outside temperature, which increased 10ºF over 3 hours corresponding to a 50 keV energy drift. Our plan for the 2020 LEReC run is to have the corrections for the cable drift operational, which is expected to reduce, but not eliminate, the energy drift. In addition, a feedback system will modulate the energy feedback will compensate any source of error with a single correction. It is possible that the energy spread will degrade while the average energy is held constant. To mitigate against this possibility, we will have to periodically measure the beam’s longitudinal distribution in the diagnostic beamline. If necessary during the measurements, the energy spread could be corrected and the cable drift and average energy corrections reset. This procedure could be automated and executed in between RHIC physics runs.