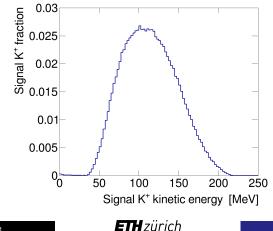
Sensitivity study for $p \rightarrow K^+ \bar{\nu}$ in DUNE dual phase

Christoph Alt

October 2, 2019



Outline

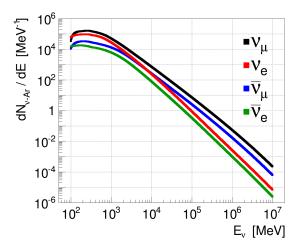
- 1. Signal simulation
- 2. Atmospheric neutrino background simulation
- 3. Detector simulation
- 4. Reconstruction
- 5. Kaon ID
- 6. Event selection
- 7. Proton decay sensitivity

Signal simulation

- Decay: $p \rightarrow K^+ \bar{\nu}$, $K^+ \rightarrow \mu^+ \nu_\mu$ (BR: 64 %)
- Proton momentum: Fermi Box model
- NEUT v5.4.0: K⁺ placed inside argon nucleus to simulate FSI ~0.07 % of K⁺ charge-exchange into K⁰ ~0.1 % of K⁺ scatter inelastically (tail on the left)

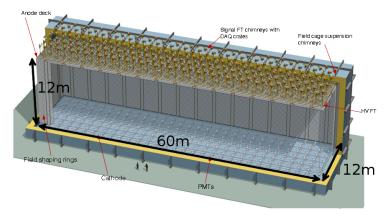
Slide 2 / 15

Atmospheric neutrino background simulation


- Flux: Honda flux tables for SURF as a function of energy and θ (zenith angle) at solar maximum. Flat in ϕ .
- Cross-sections and FSI: NEUT v5.4.0 in standard configuration, all interaction modes included
- Normalizing to 1 Mton x years gives 299 728 events in total:

Flavor	ν_e	$\bar{\nu}_e$	$ u_{\mu}$	$ar{ u}_{\mu}$	total
Interactions	84 319	18 145	156 744	40 520	299 728
CC	63 212	12 648	107 070	24 949	207 879
NC	21 107	5 497	49 674	15 571	91 849
CC res K^+	22	0	33	4	59
NC res K^+	2	1	4	1	8
DIS K^{\pm}	15	2	64	9	90

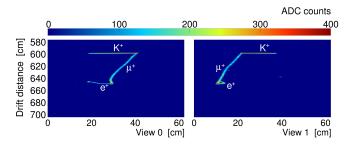
• K^{\pm} always produced with at least one additional FSP


Christoph Alt

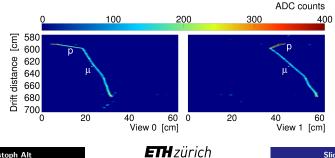
Differential neutrino-argon interaction spectrum as function of neutrino energy:

Integrating over energy results in 299 728 events (sum of all 4 flavors)

Detector simulation: DUNE dual phase far detector


- "Workspace" geometry used for this study:
- 12 meter drift (design value)
- Nine 3x3 m^2 charge readout planes (CRP) \rightarrow 9x9 m^2 charge readout area
- 3 mm channel pitch, 1 cm gap between CRPs (design values)

Christoph Alt


Detector simulation (signal and ANB)

- 1. FSP from NEUT read into LArSoft and placed 6 meter below center of $9 \times 9 m^2$ charge readout
- 2. G4 simulation
- $ightarrow \sim 7\%$ of K^+ decay in-flight
- 3. Birk's model for ionization
- 4. Diffusion: $D_T = 1.62 \ mm^2/ms$ and $D_L = 0.6 \ mm^2/ms$ (standard LArSoft values)
- 5. No attenuation, no noise and total gain = 20
- 6. Preamp shaping according to 3x1x1 prototype measurements
- Differences w.r.t. single phase simulation:
- Longer drift \rightarrow more diffusion
- Gain in charge readout
- Two perpendicular collection readout views share charge equally

Signal event display:

ANB ν_{μ} CC event display:

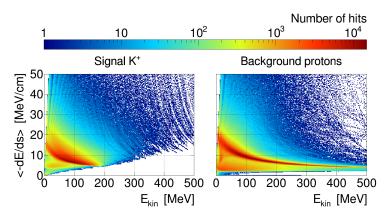
Slide 7 / 15

Reconstruction

In LArSoft:

- 1. Hit finder: DPRawHitFinder (no deconvolution of waveforms)
- 2. Pattern recognition: match each hit to truth particle with highest charge contribution
- Write hit collection to ROOT file and continue with very simple track reconstruction outside of LArSoft:
- 3. For each particle, match first and last hit in both views to get 3D end points (require two hits in each view)
- 4. Define particle 3D track as straight line between two 3D end points
- 4. With 3D track, calculate dQ/ds for each hit and, through Birk's law, dE/ds
- 5. Identify starting and stopping point of particle by splitting track in half and comparing charge in both halves

Kaon ID

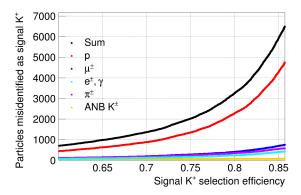

- Consider all reconstructed tracks
- Goal: identify signal K^+ with high efficiency and little background
- Strategy: Preselection + neural network classification
- Track preselection cuts:
- 1. $L_{\mathsf{Reco}} \ge 4\,\mathrm{cm}$
- 2. $Q_{\text{Reco}} \ge 50 \, \mathrm{fC}$
- 3. $p_S \le 0.1$

 p_S : fraction of empty channels between starting and stopping point (low for tracks and high for showers)

 \rightarrow Signal K^+ preselection efficiency: 0.91

Kaon ID

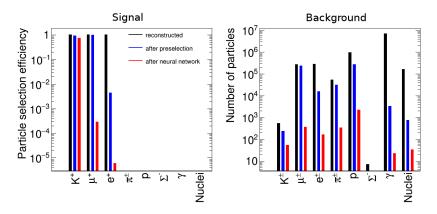
• Neural network based on $\langle -dE/ds \rangle$ vs. E_{kin} track profiles:



- For each track, a histogram with 20x20 bins in the ranges $0 \le \langle -dE/ds \rangle \le 20 \,\mathrm{MeV/cm}$ and $0 \le E_{kin} \le 20 \,\mathrm{MeV}$ is filled
- Bin contents input to train a neural network (Tensorflow/Keras) for signal K⁺ vs. all other particles

Christoph Alt

Kaon ID


- Neural network trained with dedicated data set
- Continue analysis with independent signal (\sim 175 k events) and ANB (2 Mton x years \approx 600 k events) datasets
- Signal K^+ selection efficiency vs. misidentified particles

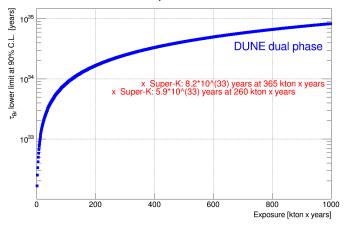
• Choose neural network signal K^+ selection efficiency = 0.8 \rightarrow 3224 particles misidentified as signal K^+

Christoph Alt

Summary kaon ID

- Signal K^+ selection efficiency = $0.91 \cdot 0.8 = 0.73$
- Background sample normalized to 2 Mton x years
- Out of 3224 particles misidentified as signal K^+ , 2175 are protons

Christoph Alt


Event selection

- Cut 1: One signal K^+ -like particle
- Cut 2: One particle with $40 \text{ cm} \le L_{\text{Reco}} \le 60 \text{ cm}$ and starting point within 15 cm from signal K^+ -like particle stopping point
- Cut 3: Three reconstructed particles with $\geq 5\,{\rm Hits}$ in at least one readout view
- Cut 4: 500 ${
 m fC} \le Q_{\sf Event} \le$ 2000 ${
 m fC}$

Cut	Signal efficiency (ϵ)	Background events (B)
/	1	599 456
1	0.728	3224
2	0.679	95
3	0.677	1
4	0.677	0

Sensitivity at 90% C.L. vs. exposure

 $p \rightarrow K^+ \overline{v}$

- DUNE dual phase calculated with $\epsilon = 0.677$ and B = 0
- $\bullet\,$ Current Super-K limit can be reached with \sim 100 kton x years

Christoph Alt

Summary

- Sensitivity study for $p o K^+ ar{
 u}$ in DUNE dual phase
- Full simulation and reconstruction with aided pattern recognition
- Only looked at $K^+\to\mu^+\nu_\mu$, similar performance for other K^+ decay channels very likely
- $\tau_{\rm Br} > 8 \cdot 10^{34}$ years with 1 Mton \times years exposure in LAr TPC

Outlook

- \bullet NEUT includes resonant and DIS ${\cal K}^+$ production in ANB
- I think GENIE includes coherent K^+ production
- FSI in NEUT and GENIE may be different
- $\rightarrow\,$ Look at a ANB sample generated with GENIE

Extra slides

Proton decay sensitivity

- "sensitivity": which lower limit on the proton decay lifetime can be measured if no proton decay is observed?
- This limit depends on
 - 1. the exposure
 - 2. the proton decay signal selection efficiency
 - 3. the expected number of background events for the given exposure and selection, represented by $\frac{1}{S}$

 $\tau_{\rm Br} = {\rm Exposure} \ x \ {\rm Signal} \ {\rm selection} \ {\rm efficiency} \ x \ \frac{1}{5}$

•
$$\sum_{n=0}^{B} P(n, B+S) = 0.1 \cdot \sum_{n=0}^{B} P(n, B)$$
, 0.1: 90% C.L.

- P(n, B): Poisson likelihood to measure n events when expecting B background events: $P(n, B) = \frac{e^{-B}B^n}{n!}$
- $\sum_{n=0}^{B} P(n, B)$: likelihood to measure B or less events when expecting B background events

Proton decay sensitivity

Number of expected background events: $B{=}0$

$$\sum_{n=0}^{B} P(n, B+S) = 0.1 \cdot \sum_{n=0}^{B} P(n, B)$$
$$\Leftrightarrow P(0, S) = 0.1 \cdot P(0, 0)$$
$$\Leftrightarrow e^{-S} = 0.1$$
$$\Leftrightarrow S = -\ln(0.1) = 2.3$$