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♦ “Deep Underground Neutrino 
Experiment”

• 1300 km baseline

• Large (40 kt) LArTPC far 
detector and near detector
(w/ LAr component)

• Far detector 1.5 km 
underground

• Wide-band, on-axis beam

♦ Primary physics goals:
• ν oscillations (νμ/νμ disappearance, 

νe/νe appearance)

– Ordering of ν masses

– δCP , θ23 , θ13

• Nucleon decay

• Supernova burst neutrinos

• Solar neutrinos

Begins Taking Physics Data in 2026
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DUNE CollaborationDUNE Collaboration

♦ Over 1000 collaborators from 175 institutions in 32 countries!

May 2018 Collaboration Meeting



DUNE Far DetectorDUNE Far Detector
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The DUNE Far 
Detector:

A Giant LArTPC
Detector

Begins Taking Physics Data in 2026



Far Detector LArTPCFar Detector LArTPC
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♦ Two far detector (FD) designs being considered:  
single phase (LAr) and dual phase (LAr + GAr)

♦ Single phase FD uses modular drift cells (scalable)
• Suspended Anode and Cathode Plane Assemblies 

(APAs and CPAs), 3.6 m drift, 500 V/cm field

• Wrapped wire to reduce number of readout 
channels needed and cabling complexity

♦ Four 10-kt modules deployed in stages
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♦ Two ~6×6×6 m3 “ProtoDUNEs” in charged 
test beam at CERN (one per FD design)

♦ Test of component installation, 
commissioning, and performance

♦ ProtoDUNE-SP operating since September 
2018; ProtoDUNE-DP in 2019



ProtoDUNEsProtoDUNEs
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Inside ProtoDUNE-SP

ProtoDUNE-SP Prior to 
Closing of Temporary 
Construction Opening

♦ Two ~6×6×6 m3 “ProtoDUNEs” in charged 
test beam at CERN (one per FD design)

♦ Test of component installation, 
commissioning, and performance

♦ ProtoDUNE-SP operating since September 
2018; ProtoDUNE-DP in 2019



ProtoDUNE-SP From AboveProtoDUNE-SP From Above
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LArTPC
Fundamentals
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LArTPC Event DisplayLArTPC Event Display

♦ Raw data representations are images with very fine-grained 
spatial resolution (~1 mm)!
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Beam Direction



Signal FormationSignal Formation
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LArTPC ImagingLArTPC Imaging
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3D Event Reconstruction3D Event Reconstruction
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♦ Combine two/three 2D wire plane views  reconstruct event in → 3D
• Below:  neutrino interaction event from MicroBooNE data

ν



First Results
from ProtoDUNE-SP
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First Beam EventsFirst Beam Events
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♦ Data-taking w/ beam 
began Sep. 21st, 2018

♦ Showing first events 
in data from charged 
beam (μ, π, K, p, e)



First Tracks – Low Noise!First Tracks – Low Noise!
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♦ First tracks in data – without any software noise filtering, 
event display looks very clean!

♦ Some very mild coherent noise, but manageable



Noise PerformanceNoise Performance
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♦ Noise:  550 (480) e- for collection plane, 650 (550) e- for 
induction planes without (with) coherent noise filtering

Known Issues with Cold ADC (Fixing 
for DUNE Far Detector)

Unresponsive Channels
(0.3% of All Channels)



Noise Performance (cont.)Noise Performance (cont.)
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♦ Noise:  550 (480) e- for collection plane, 650 (550) e- for 
induction planes without (with) coherent noise filtering



Signal-to-Noise Ratio, LifetimeSignal-to-Noise Ratio, Lifetime
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♦ Signal-to-noise ratio very high (before or after noise filtering)!
• U Plane:  16  → 18

• V Plane:  19  → 21

• Y Plane:  38  → 49

♦ After corrections for space charge effects (see later), electron lifetime 
observed to be very high:  > 20 ms

Cathode

AnodeAnode

Study Using
Cosmic Muons



Space Charge EffectsSpace Charge Effects
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♦ Looking at cosmic data, notice offsets in track start/end points from 
top/bottom of TPC

• Very suggestive of space charge effects (SCE) as expected as the 
ProtoDUNE-SP is near the surface; also seen at MicroBooNE

• Space charge:  build-up of slow-moving Ar+ ions due to e.g. cosmic 
muons impinging active volume of TPC (via ionization)

• Leads to E field distortions, distortions in reconstructed ionization position

– Both can bias particle dE/dx and energy!  Important to calibrate!

e+ dE/dx
(Shower Start)



Space Charge @ TPC FacesSpace Charge @ TPC Faces

38

♦ Look at spatial offsets from top, front edges of TPC

♦ SCE 50-75% larger than prediction from simulation (up to 35 cm!)
• Still investigating – tune argon flow model, and/or ion drift speed?

Data:
TPC Top

Data:
TPC Front

Simulation:
TPC Top

Simulation:
TPC Front



Electric Field DistortionsElectric Field Distortions
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♦ Straightforward to calculate E field distortions everywhere in 
detector with measured spatial offsets  → also put in simulation

♦ Result:  nearly 25% higher E field near cathode than nominal E field
• Reminder:  nominal E field is 500 V/cm

• That means E field near cathode greater than 600 V/cm!

♦ Following results include calibration of SCE (spatial, E field)



Cosmic MuonsCosmic Muons
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♦ Use muon dE/dx at high residual range for absolute energy scale

♦ After calibration, good agreement between data and simulation for 
cosmic muon dE/dx – smearing in MC slightly larger



ProtonsProtons
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♦ Proton dE/dx distribution sees very good agreement between data 
and simulation – sign that calibrations are working well



PositronsPositrons
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♦ First studies of beam positron selection carried out, including study 
of dE/dx near beginning of shower
• Good agreement between data and MC

♦ Shower reconstruction (beam positrons, photons from neutral 
pions) is major focus of ProtoDUNE-SP analysis moving forward



Final RemarksFinal Remarks
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♦ ProtoDUNEs are necessary step along way to construction 
and successful data-taking with DUNE far detector
• ProtoDUNE-SP:  took data with beam in late 2018

• ProtoDUNE-DP:  will begin first run in late 2019

♦ First ProtoDUNE-SP results presented here – promising!

♦ ProtoDUNE-SP continues to take cosmic data
• Plan is to continuing to take data for a while in order to study 

detector performance, reconstruction, calibration 

♦ Discussion of second ProtoDUNE-SP run in beam in 2022
• Study detector performance after upgrade of TPC electronics

• Test dedicated calibration systems for DUNE far detector



Thanks!Thanks!
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Backup
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Neutrino OscillationsNeutrino Oscillations

♦ Neutrinos oscillate  neutrino flavors mix  → → neutrinos have 
mass!  Not predicted by Standard Model!

Two-Flavor
Approximation:

See oscillations in data, with multiple 
experiments using different detector 
technology and neutrino sources!

Super-K MINOS
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Ordering Neutrino MassOrdering Neutrino Mass

♦ Open question:  is neutrino mass 
ordering “normal” or “inverted”?

“Inverted” Mass
Ordering

“Normal” Mass
Ordering
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Matter-Antimatter AsymmetryMatter-Antimatter Asymmetry

♦ Open question:  do neutrinos violate CP (charge-parity)?
• Or:  do neutrinos and antineutrinos have different oscillation 

probabilities?  (smoking-gun feature of non-zero δCP)

• Could explain matter-antimatter asymmetry in universe 

• If so, precise measurement of δCP tells us details of mechanism

• If not, there must be new physics to explain asymmetry!



DUNE Physics MilestonesDUNE Physics Milestones
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Why Liquid Argon?Why Liquid Argon?

♦ Argon is cheap:  ~1% of atmosphere

♦ Dense target (more ν-N interactions per unit time)

♦ High scintillation light yield, argon transparent to own light

♦ Relatively small radiation length for shower containment
50



DUNE Oscillation PhysicsDUNE Oscillation Physics
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♦ LArTPC provides high signal efficiency, 
low backgrounds for oscillation physics
• Key to answering open questions from 

previous two slides

♦ Extract ν oscillation parameters by 
means of a 4-sample (νμ / νμ / νe / νe) fit

• Constrain flux, cross section systematics 
using LAr near detector (ND)

♦ DUNE currently studying impact of 
detector systematics on measurements 
• Preliminary goal:  constrain detector 

systematics to 1-2% level (difficult!)

ν
μ

ν
e
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Introducing… the LArTPCIntroducing… the LArTPC

♦ DUNE physics program requires detector 
technology with:
• Low Thresholds – important for detecting 

low-energy particles (e.g. in supernova/solar 
neutrino detection)

• Excellent Calorimetry – important for 
precise estimation of neutrino energy, 
particle ID with dE/dx

• High Spatial Resolution – allows for 
background rejection and particle ID

• Scalability – large detectors yielding high 
event rates for precision physics 
measurements

♦ These are all traits of the LArTPC!
• Liquid Argon Time Projection Chamber



ProtoDUNE-SP GeometryProtoDUNE-SP Geometry
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♦ 1/20 of full 10-kt FD module
• 0.77 kt total LAr mass

• Components are 1:1 scale

♦ Six APAs (three per side)
• 2,560 channels per APA

♦ Central cathode plane (CPAs) 
divides active volume into two 
separate drift volumes

• 3.6 m max drift length

• E field of 500 V/cm

♦ Field cage for keeping E field 
uniform (up to space charge)

♦ Cryogenic TPC electronics



Photon Detection SystemPhoton Detection System
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♦ Three types of photon detection units (60 in total, 10 per APA)
• Detect prompt (τ = 6 ns) and late (τ = 1500 ns) scintillation light 

♦ Key for proton decay and supernova/solar neutrino physics (trigger)

♦ Provides timing information (t
0
) for non-beam particles

• Allows one to perform/apply drift-dependent calibrations

PD System Layout



Cryogenic TPC ElectronicsCryogenic TPC Electronics
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♦ Cold electronics (in LAr) directly 
attached to APA  low noise levels→

♦ 1 APA  20 Front-End Mother →
Boards (FEMBs)
• 128 channels/FEMB

♦ FEMB holds 8 Front-End (FE) 
ASICs (16 channels/ASIC) and 8 
ADC ASICs (16 channels/ASIC)

♦ FE ASIC performs two tasks:
• Pre-amplification of signals

• Signal shaping (0.5-3 μs)

♦ Each FEMB multiplexed to 4 
outputs (via FPGAs)



Inside/Outside CryostatInside/Outside Cryostat
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Beam PlugBeam Plug
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Beamline InstrumentationBeamline Instrumentation
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Beam Data CollectionBeam Data Collection
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Photon Detector ResultsPhoton Detector Results
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♦ Have begun characterizing gain and relative timing of PD units
• Plots above:  characterizing gain of dip-coated light bars

♦ Studies underway on performing energy reconstruction using 
light signals
• 60% of energy converted to light at 500 V/cm  use to help energy →

measurement obtained nominally using ionization signals



SCE CalibrationSCE Calibration
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Will include SCE corrections in next round of data processing!

(latter: through electron-ion recombination)



SCE Calibration (cont.)SCE Calibration (cont.)
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Will include SCE corrections in next round of data processing!

(latter: through electron-ion recombination)
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