

Multi-physics simulations of vacuum breakdown phenomena

Andreas Kyritsakis,

Institute of Technology, University of Tartu

HG2021, 21.04.2021

Outline

- > The 4 stages of vacuum breakdown development
- > Stage 3:
 - Particle In Cell (PIC) Simulations
 - The missing initial vapor
- > Stage 2:
 - Concurrent ED-MD simulations on nanotips
 - The thermal runaway process
 - Integration with PIC
 - Space Charge effects in field emission
- > Stage 1:
 - Atom diffusion on metal surfaces under high electric field

Vacuum breakdown stages

Formation of emission spots on surface, field enhancement

Stage 3 (~ns) Anode \overrightarrow{F}_{ext} Cathode -

Ionization runaway, plasma formation, high current, voltage collapse

Stage 2 (~ns)

Tip thermal runaway, neutral evaporation

Stage 4 (10ns-µs)

Plasma expansion, current rise, voltage collapse, surface damage

Importance of stages 2,3: power limits

Soft Cu electrode, Anton Saressalo

Calculated S_c @ 100 MHz Jan Paszkiewicz

- Can we use this as a design way to mitigate Vacuum breakdown?
- First, we need to understand it
- What is the limiting factor for BD initiation?
- What makes the available EM power to be sufficient in some cases, while insufficient in other?

Ionization runaway, plasma formation, high current, voltage collapse

Particle In Cell method

1. Track particles:

$$\vec{r}_i(t + \Delta t) = \vec{r}_i(t) + \vec{v}_i(t)\Delta t$$
$$\vec{v}_i(t + \Delta t) = \vec{v}_i(t) + \Delta t \frac{q_i}{m_i} \nabla \Phi$$

2. Interpolate charge density:

$$\rho(\vec{r}) = \sum_{i} w_i q_i U(\vec{r} - \vec{r}_i)$$

3. Collide particles (Monte Carlo method):

$$e^- + Cu \rightarrow Cu^+ + 2e^-$$

(... and many other collision types)

4. Solve **Poisson** equation (FEM)

$$\nabla^2 \Phi = -\frac{\rho}{\epsilon_0}$$

- 5. Calculate surface currents and **inject** new particles
- **6. Repeat** for desired number of time steps

ArcPIC

Densities, time = 0.000 [ns]

- Plasma can ignite emitter assuming a small tip that:
 - Emits e with an enhancement $\beta>35$
 - Evaporates 0.015 Cu/e.
- What are the mechanisms in **Stage 2** that produce the necessary vapor?

H. Timko et. al., Contrib. Plasma. Phys. 4, 229 (2015). Animation by K. Sjobaek

Stage 2 (~ns)

Tip thermal runaway, neutral evaporation

Multi-physics simulations

- Thermal runaway: **complex** process that involves various phenomena in various space scales
- > Need for **concurrent**, **multiscale**, **multi-physics** simulations

Concurrent MD-FEM

- Mesh generation "on the fly" when MD system changes
- 2. Solve the Poisson equation

$$\nabla^2 \Phi = -\frac{\rho}{\epsilon_0}$$

3. Feedback to MDelectrostatic forces +heating

Thermal effects of electron emission

- > Two heat deposition components:
 - ✓ Joule heating $P_I = J^2/\sigma$
 - ✓ Nottingham heat (surface heat deposition)

$$P_N(F,T)$$

$$\int_{\Gamma} \langle F(\vec{r}) - F_{r} \rangle$$

$$= \int (E(\vec{k}) - E_F) f_{FD}(\vec{k}; T) D(\vec{k}) d^3k$$
$$= J_S \langle E - E_F \rangle / e$$

The concurrent algorithm (FEMOCS)

Thermal runaway

Thermal runaway:

Evaporation of large parts of the tip in forms of atoms and nanoclusters

[A. Kyritsakis et. al., J. Phys. D: Appl. Phys. **51** 225203 (2018)]

Evaporation events

Mean evaporation

$$R_{Cu}$$
= 75±11 atoms/ps

- \rightarrow Mean current I = 2807±153 e/ps
- $R_{Cu/e} = 0.025 \pm 0.003$ atoms/e
- Exceeds the minimum 0.015 found by plasma simulations

Connecting stages 2 and 3

(c) 2017 University of Helsink

Incorporating PIC in FEMOCS

Results including PIC (SC effects)

Time = 0.0 ps

M. Veske et. al, Phys. Rev. E 101, 053307 (2020)

General Space Charge Scaling

Comparison against experiment (Barbour et al, Phys. Rev. 92, 45 (1953))

Geometry-dependent correction factor

$$F = F_L - \frac{4}{3} \omega \frac{kJ_S \sqrt{V}}{F_L}$$

[A. Kyritsakis et. al. arXiv:2008.11984 (under review in New. J. Phys.]

Outlook & on-going work

- Final goal:
 - Simulation of the full BD process
 - Understanding the limitations of:
 - \checkmark Power flow (R_{BD})
 - \checkmark Tip size, shape, β, etc

- On-going development:
 - ✓ More plasma species (Cu, Cu⁺, Cu⁺⁺...)
 - ✓ Bombardment heating
 - ✓ Direct field ionization
 - ✓ Coupling to external circuit $Z_{BD}(\omega)$
 - ? Fully coupled MD-PIC:
 - ? Boundary injection
 - ? Two temperature model

Stage 1: Emitter growth

Formation of emission spots on surface, field enhancement

Existing hypotheses:

- Deposition of adsorbents
- Surface diffusion under field
- Dislocation movement
- > macroparticles

Fundamental question

- ➤ How are migration barriers affected by high electric fields?
- Experimental evidence of field effects are known experimentally since the 60s
- ☐ Directional diffusion of W adatom on W {110} surface

☐ W tips diffusing into different shapes when flashed under high field

[1] T. T. Tsong and G. L. Kellogg, Phys. Rev. B 12, 1343 (1975).

[2] S. Fujita and H. Shimoyama, Phys. Rev. B 75(23), 235431 (2007).

- Isolated atom under field *F*
 - Total dipole moment: $p(E) \approx \mu + \alpha F$
 - Energy under field: $U(E) = U_0 \int_0^F p dF = U_0 \mu F \frac{1}{2} \alpha F^2$
 - The atom is attracted towards higher *F*

Adatoms under high field

 \triangleright First trial: like free atoms, but with variable μ , α (Tsong & Kellogg 1975)

$$E_m = E_0 - \mu_s F_s + \mu_l F_l - \frac{1}{2} \alpha_s F_s^2 + \frac{1}{2} \alpha_l F_l^2$$

- > But how is the atomic dipole defined?
- > Let's define it from atomic partial charges

➤BUT: no agreement with DFT

Considering the atomic environment

$$P = \int_{V} \rho \vec{r} d^{3}r = \mathcal{M} + AF$$
$$E = E_{0} - \mathcal{M}F - \frac{1}{2}AF^{2}$$

[1] A. Kyritsakis, E. Baibuz et. al., Phys. Rev. B 99 (2019) 205418

Define
$$p_i = P_i - P_0 \ (\alpha_i = A_i - A_0, \mu_i = \mathcal{M}_i - \mathcal{M}_0)$$

> Barrier (no *F* gradient)

$$E_m(F) = E_m(0) - (\mu_s - \mu_l)F - \frac{1}{2}(\alpha_s - \alpha_l)F^2$$

Biased diffusion

$$E_m(F) = E_m(0) - (\mu_s - \mu_l)F - \frac{1}{2}(\alpha_s - \alpha_l)F^2$$
$$-\Delta F(\mu_s + \alpha_s F_l)$$

Bias coefficient:

extracted from experimental drift velocity:

$$B = 1.14 \pm 0.25e$$
Å

> Our calculations:

$$B = 0.88 \pm 0.03e$$
Å

➤ Good agreement!

Tip growth in high electric field

V. Jansson, et. al., Nanotechnology 31, 355301 (2020)

- > Tips can grow under high field
- > BUT:
 - we had to exaggerate F and T
 - All μ , α are taken equal to W on W{110}

Conclusions

> Stages 2 & 3:

- > Multi-physics simulations are necessary to understand the VBD development
- > Thermal runaway of metal tips releases vapor necessary to start plasma
- > Further development of hybrid MD-PIC necessary to understand plasma formation and dependence on power

> Stage 1:

- > Preliminary results on surface diffusion under high electric field indicate that tips can grow
- > Further calculations are required to consider different polarization characteristics

Thanks to all contributing co-workers

- > University of Tartu:
 - Vahur Zadin
 - Mihkel Veske
 - Kristjan Eimre
 - Ihar Suvorau
 - Sergei Vlassov
 - Sven Oras

- ➤ University of Helsinki:
 - Flyura Djurabekova
 - Ville Jansson
 - Ekaterina Baibuz
 - · Roni Koitermaa

- > CERN:
 - > Kyrre Sjobaek
 - > Walter Wuensch
 - > Sergio Calatroni

THANK YOU

