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Outline

 The 4 stages of vacuum breakdown development

 Stage 3: 

 Particle In Cell (PIC) Simulations

 The missing initial vapor

 Stage 2:

 Concurrent ED-MD simulations on nanotips

 The thermal runaway process

 Integration with PIC

 Space Charge effects in field emission 

 Stage 1:

 Atom diffusion on metal surfaces under high electric field
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Vacuum breakdown stages
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Calculated Sc @ 100 MHz
Jan Paszkiewicz

Importance of stages 2,3: 
power limits

Soft Cu electrode,
Anton Saressalo

• Can we use this as a design way to 

mitigate Vacuum breakdown?

• First, we need to understand it

• What is the limiting factor for BD 

initiation?

• What makes the available EM power 

to be sufficient in some cases, while 

insufficient in other?
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Particle In Cell method
1. Track particles:

𝑟𝑟𝑖𝑖 𝑡𝑡 + Δ𝑡𝑡 = 𝑟𝑟𝑖𝑖 𝑡𝑡 + 𝑣⃗𝑣𝑖𝑖 𝑡𝑡 Δt

𝑣⃗𝑣𝑖𝑖 𝑡𝑡 + Δ𝑡𝑡 = 𝑣⃗𝑣𝑖𝑖 𝑡𝑡 + Δ𝑡𝑡
𝑞𝑞𝑖𝑖
𝑚𝑚𝑖𝑖

𝛻𝛻𝛻

2. Interpolate charge density:

𝜌𝜌 𝑟𝑟 = �
𝑖𝑖
𝑤𝑤𝑖𝑖𝑞𝑞𝑖𝑖𝑈𝑈(𝑟𝑟 − 𝑟𝑟𝑖𝑖)

3. Collide particles (Monte Carlo method):
𝑒𝑒− + 𝐶𝐶𝐶𝐶 → 𝐶𝐶𝑢𝑢+ + 2𝑒𝑒−

(… and many other collision types)

4. Solve Poisson equation (FEM)

𝛻𝛻2Φ = − 𝜌𝜌
𝜖𝜖0

5. Calculate surface currents and inject new particles

6. Repeat for desired number of time steps 
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ArcPIC

H. Timko et. al., Contrib. Plasma. Phys. 4, 229 (2015).  Animation by K. Sjobaek

• Plasma can ignite emitter assuming a 

small tip that:

• Emits e with an enhancement β>35

• Evaporates 0.015  Cu/e.

• What are the mechanisms in Stage 2

that produce the necessary vapor?
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Multi-physics simulations

Thermal runaway: complex
process that involves various 
phenomena in various space scales

Need for concurrent, multi-
scale, multi-physics simulations
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Concurrent MD-FEM

1. Mesh generation “on the fly” 

when MD system changes

2. Solve the Poisson equation 

𝛻𝛻2Φ = − 𝜌𝜌
𝜖𝜖0

3. Feedback to MD 

electrostatic forces + 

heating
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Thermal effects of 
electron emission

 Two heat deposition components:

 Joule heating 𝑃𝑃𝐽𝐽 = 𝐽𝐽2/𝜎𝜎
 Nottingham heat (surface heat 

deposition)
𝑃𝑃𝑁𝑁 𝐹𝐹,𝑇𝑇

= � 𝐸𝐸 𝑘𝑘 − 𝐸𝐸𝐹𝐹 𝑓𝑓𝐹𝐹𝐹𝐹 𝑘𝑘;𝑇𝑇 𝐷𝐷 𝑘𝑘 𝑑𝑑3𝑘𝑘

= 𝐽𝐽𝑠𝑠 𝐸𝐸 − 𝐸𝐸𝐹𝐹 /𝑒𝑒
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The concurrent algorithm 
(FEMOCS)
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FEM mesh

Electric Field

e- Emission 
currents 
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Current 
distribution,
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Temperature 
distribution

Velocity 
perturbration

Sur. charge 
distribution

Force 
perturbation

[M. Veske, et. al, J. Comp. Phys. 367 
(2018) 279]



Andreas Kyritsakis, HG2021– Apr 21, 2021 13

Thermal runaway

Evaporation of large parts of the tip in 
forms of atoms and nanoclusters
[A. Kyritsakis et. al., J. Phys. D: Appl. Phys. 51 225203 (2018)]

Thermal runaway:

↑atom mobility

↑ Temperature

↑sharpness

↑ resistivities

↑local field ↑induced stresses

↑electron emission
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Evaporation events

 Mean evaporation

RCu= 75±11 atoms/ps

 Mean current I = 2807±153 e/ps

 RCu/e= 0.025±0.003 atoms/e

 Exceeds the minimum 0.015 found 

by plasma simulations
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Connecting 
stages 2 and 3

Stage 2 
(MD-ED) Stage 3 

(PIC)
Stage 2&3 

(MD-FEMOCS-PIC)
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Incorporating PIC in FEMOCS
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Results including PIC (SC effects)

M. Veske et. al, Phys. Rev. E 101, 053307 (2020)
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General Space Charge Scaling 

𝐹𝐹 = 𝐹𝐹𝐿𝐿 −
4
3
𝜔𝜔
𝑘𝑘𝐽𝐽𝑠𝑠 𝑉𝑉
𝐹𝐹𝐿𝐿

Geometry-dependent 
correction factor

[A. Kyritsakis et. al. arXiv:2008.11984
(under review in New. J. Phys.]

Comparison against experiment (Barbour et al,  Phys. Rev. 92, 45 (1953))

https://arxiv.org/abs/2008.11984
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Outlook & on-going work

• On-going development:
 More plasma species (Cu, Cu+, Cu++ …)
 Bombardment heating
 Direct field ionization
 Coupling to external circuit - ZBD(ω)
? Fully coupled MD-PIC:

? Boundary injection
? Two temperature model

• Final goal: 
• Simulation of the full BD process
• Understanding the limitations of:
 Power flow (RBD)
 Tip size, shape, β, etc
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Stage 1: Emitter growth
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• Existing hypotheses: 

 Deposition of adsorbents

 Surface diffusion under field

 Dislocation movement

 macroparticles
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Fundamental question

 How are migration barriers affected by high electric fields ?

 Experimental evidence of field effects are known experimentally since the 60s

[1] T. T. Tsong and G. L. Kellogg, 
Phys. Rev. B 12, 1343 (1975).

 Directional diffusion of W 
adatom on W {110} surface

 W tips diffusing into different shapes 
when flashed under high field

[2] S. Fujita and H. Shimoyama, Phys. Rev. B 75(23), 235431 (2007).
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Free molecules under high field

• Isolated atom under field F

• Total dipole moment: 𝑝𝑝(𝐸𝐸) ≈ 𝜇𝜇 + 𝛼𝛼𝐹𝐹

• Energy under field: 𝑈𝑈 𝐸𝐸 = 𝑈𝑈0 − ∫0
𝐹𝐹 𝑝𝑝𝑝𝑝𝐹𝐹 = 𝑈𝑈0 − 𝜇𝜇𝐹𝐹 − 1

2
𝛼𝛼𝐹𝐹2

• The atom is attracted towards higher 𝐹𝐹

𝑭𝑭 𝑭𝑭 = 0 𝑭𝑭
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Adatoms under high field
 First trial: like free atoms, but with variable μ,α (Tsong & Kellogg 1975)

𝐸𝐸𝑚𝑚 = 𝐸𝐸0 − 𝜇𝜇𝑠𝑠𝐹𝐹𝑠𝑠 + 𝜇𝜇𝑙𝑙𝐹𝐹𝑙𝑙 −
1
2
𝛼𝛼𝑠𝑠𝐹𝐹𝑠𝑠2 + 1

2
𝛼𝛼𝑙𝑙𝐹𝐹𝑙𝑙2

 But how is the atomic dipole defined?

 Let’s define it from atomic partial charges
BUT: no agreement with DFT
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Considering the atomic environment 

 Barrier (no F gradient)

𝐸𝐸𝑚𝑚 𝐹𝐹 = 𝐸𝐸𝑚𝑚 0 − 𝜇𝜇𝑠𝑠 − 𝜇𝜇𝑙𝑙 𝐹𝐹 −
1
2 𝛼𝛼𝑠𝑠 − 𝛼𝛼𝑙𝑙 𝐹𝐹2

[1] A. Kyritsakis, E. Baibuz et. al., 
Phys. Rev. B 99 (2019) 205418

𝑃𝑃 = �
𝑉𝑉
𝜌𝜌𝑟𝑟𝑑𝑑3𝑟𝑟 = ℳ + 𝐴𝐴𝐴𝐴

𝐸𝐸 = 𝐸𝐸0 −ℳ𝐹𝐹 −
1
2
𝐴𝐴𝐹𝐹2

Define 𝑝𝑝𝑖𝑖 = 𝑃𝑃𝑖𝑖 − 𝑃𝑃0 (𝛼𝛼𝑖𝑖 = 𝐴𝐴𝑖𝑖 − 𝐴𝐴0, 𝜇𝜇𝑖𝑖 = ℳ𝑖𝑖 −ℳ0)

𝑖𝑖 0
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Biased diffusion

Bias coefficient:

 extracted from experimental 

drift velocity:

𝐵𝐵 = 1.14 ± 0.25𝑒𝑒Å

 Our calculations:

𝐵𝐵 = 0.88 ± 0.03𝑒𝑒Å

 Good agreement!

𝐸𝐸𝑚𝑚 𝐹𝐹 = 𝐸𝐸𝑚𝑚 0 − 𝜇𝜇𝑠𝑠 − 𝜇𝜇𝑙𝑙 𝐹𝐹 −
1
2
𝛼𝛼𝑠𝑠 − 𝛼𝛼𝑙𝑙 𝐹𝐹2

−Δ𝐹𝐹(𝜇𝜇𝑠𝑠 + 𝛼𝛼𝑠𝑠𝐹𝐹𝑙𝑙)

𝑬𝑬
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Tip growth in high electric field

V. Jansson, et. al., Nanotechnology 31, 355301 (2020) 

 Tips can grow under high field

 BUT:

 we had to exaggerate F and T

 All μ,α are taken equal to W on W{110}
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Conclusions

 Stages 2 & 3:
 Multi-physics simulations are necessary to understand the VBD development

 Thermal runaway of metal tips releases vapor necessary to start plasma

 Further development of hybrid MD-PIC necessary to understand plasma formation 

and dependence on power

 Stage 1:
 Preliminary results on surface diffusion under high electric field indicate that tips 

can grow

 Further calculations are required to consider different polarization characteristics
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