The UCLA High Gradient Cryogenic RF Research Program

J. B. Rosenzweig

UCLA Dept. of Physics and Astronomy

High Gradient 2021

April 19, 2021

*Work supported by NS Award PHY-1549132, Center for Bright Beams and US DOE HEP grants DE-SC0009914 and DE-SC0020409

Challenges and Promise of High EM Fields UCLA in Structures

- Path to applications clearer than more exotic approaches
 - Enable next generation instruments in HEP and photon science
 - Miniaturization implies frequency scaling
- Exploring extreme regimes
 - TowardsGV/m fields in condensed matter systems
 - Short wavelength operation
 - Novel sources (wakefields, laser-based)
 - New geometries/symmetries
 - Cryogenic operation

UCLA Research into High Field Structures

- Historical emphasis at UCLA
 - Wakefields (mm-to-THz)
 - Photoinjectors
 - Fundamental high field physics
- Recent pivot (>2015) to cryogenic RF
- Driven by urgent **applications** for compact, high impact accelerators
 - Linear collider (C³ collaboration, UCLA flat beam injector)
 - Ultra-compact X-ray Free-Electron Laser (UC-XFFEL)
- Fundamental aspects of high fields
 - Beam dynamics w/large accelerating fields
 - RF breakdown
 - Dark current emission
 - Optimized design
 - Photoemission

C³ may put this is reach

Vision of a university-scale UC-XFEL

UC-XFEL Recipe Ingredients

- Ultra-high field electron cryogenic RF photoinjector source
- High gradient cryogenic accelerator
- Frontier simulation of collective effects (CSR, IBS)
- Beam measurements at micron/fs scale
- Very high frequency RF devices
- Advanced magnetic systems micro-undulators and quads
- Machine-learning based control
- Compact X-ray optics
- Understanding of science case

First two points enable entire scenario, based on very high field cryogenic RF field research

Hybrid cryo-undulator: Pr-based, SmCo sheath; λ =9 mm up to 2.2 T

Details of UC-XFEL approach explored

New Journal of Physics

The open access journal at the forefront of physics

Deutsche Physikalische Gesellscha

PAPER • OPEN ACCESS

An ultra-compact x-ray free-electron laser

J B Rosenzweig^{15,1}, N Majernik¹, R R Robles¹, G Andonian¹, O Camacho¹, A Fukasawa¹, A Kogar¹,

G Lawler¹, Jianwei Miao¹, P Musumeci¹, B Naranjo¹, Y Sakai¹, R Candler² (D), B Pound², C Pellegrini^{1,3},

C Emma³, A Halavanau³, J Hastings³, Z Li³, M Nasr³, S Tantawi³, P. Anisimov⁴, B Carlsten⁴, F Krawczyk⁴, E Simakov⁴, L Faillace⁵, M Ferrario⁵, B Spataro⁵, S Karkare⁶, J Maxson⁷, Y Ma⁸,

J Wurtele⁹, A Murokh¹⁰, A Zholents¹¹, A Cianchi¹², D Cocco¹³ and S B van der Geer¹⁴

- Hide full author list

Published 21 September 2020 • © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute

of Physics and Deutsche Physikalische Gesellschaft

New Journal of Physics, Volume 22, September 2020

Citation J B Rosenzweig et al 2020 New J. Phys. 22 093067

- 47 pages, well beyond standard guidelines
- Most highly downloaded NJP article of late 2020
- Game-changing application through high field acceleration

urn	off	MathJax	

The Ultra-Compact FEL Design Realized UCLA

FEL begins life with high brightness electron beam source: the RF photoinjector

- Laser gating to fs-to-ps level
- RF capture violent acceleration
 - Accelerating fields 10x DC sources
 - Strong RF focusing effects
- Preserve phase space structure
 - Control pulse expansion
 - Minimize emittance growth
 - Creation, manipulation of single component plasma (emittance compensation)
- Frontier RF engineering
- Photocathode physics
- Advanced laser techniques
- Apply lessons to linear collider source

Traditional UCLA-designed RF photoinjector operated at ~100 MV/m

Rethink points in red when fields much enhanced.

9

Higher brightness at emission

- 5D Brightness at cathode: $B_e = \frac{2I}{\varepsilon_n^2} = \frac{2J_{\text{max}}m_ec^2}{k_pT_e}$
- In 1D limit, peak current from a pulsed photocathode is $L \approx \frac{ec\varepsilon_0}{(E \sin c)^2}$

$$J_{z,b} \approx \frac{ec\varepsilon_0}{m_e c^2} (E_0 \sin \varphi_0)^2$$

- Brightness is $B_{e,b} \approx \frac{2ec\varepsilon_0}{k_B T_c} (E_0 \sin\varphi_0)^2 \begin{bmatrix} B_{6D} & \text{with 3D} \\ effects & \text{is similar} \end{bmatrix}$
 - Lower emission temperature and/or...
- Higher launch field
 - Beat LCLS 120 MV/m (60 MV/m at injection)

High gradient acceleration at cryogenic temperature

- Recent X-band work by SLAC-UCLA collaboration on cryogenic RF cavity research gives breakthrough surface fields
 - ASE lowers heating, thermal expansion small, enhanced strength
- 200 MV/m surface fields -> 500 MV/m. ~300 MV/m limit (dark current)
- Transformative applications in photoinjector brightness
 - And system compactness

Practical concern: dark current emission UCLA

- Field emission is very large above 300 MV/m surface field
- Mitigation schemes must be explored

at SLAC

A. D. Cahill, et al., Phys. Rev. Accel. Beams 21, 061301 (2018)

Challenges of Dark Current

• Fowler-Nordheim emission

 $J_{\rm FN}(\mathbf{s}) = \frac{A(\boldsymbol{\beta}(\mathbf{s})E_0(\mathbf{s}))^2}{\phi_w t^2(y)} \exp\left(\frac{-B\boldsymbol{\nu}(y)\phi_w^{3/2}}{\boldsymbol{\beta}(\mathbf{s})E_0(\mathbf{s})}\right)$

- Field enhancement factor β (s) typically ~50
 - Surface contamination at atomic level
 - Large dark current
 - Threat to applications (esp. low charge)
 - Active measures (fast kickers)
- Add surface coating
 - Silicon oxynitride eliminates emitters; high work function
 - Graphene (transparent)
 - Experimental demonstration needed
 - Needle tests at AWA
- Bulk material solutions

UCLA C-band Cryogenic Photoinjector Project

• Cryogenic C-band photoinjector at extreme high brightness for FEL

Profit from very high fields (up to 250 MV/m) on photocathode; higher spatial harmonics

See talk by A. Fukasawa, HG 2021; also new article by UCLA group R. Robles, et al., <u>https://arxiv.org/abs/2103.08789</u> (sub. to PRAB)

Cryogenic solenoid

- High field, compact solenoid; high current density
- Cryogenic operation gives robust solution

Previus 6 kG design challenging

Enhanced 6D Brightness with high field

- High current (nearly 20 A) at 100 pC
- Very low energy spread required new approach to IBS calculation

Record 6D brightness predicted, factor of >40 above original LCLS

Higher brightness through lower emission temperature

- MTE of photo-electrons can be notably lower at cryo-temperatures
- Eliminate Fermi-Dirac tail. Cold beams

Issue: two-photon and heating effects due to high laser power

Half-cell cryogenic photo-emission test stand UCLA

- Up to 120 MV/m field in 0.5 cell geometry, in cryostat
- Precision solenoid, very low emittance diagnostics (10 meV MTE)
- Load-lock photocathode assembly

0.5 cell gun with copper cathode (no load lock) Under construction (support from NSF CBB)

Cryo-emission test bed

Asymmetric emittance beams for linear colliders

- Eliminate electron damping ring
- Round-to-flat beam transformation
- Very small 4D transverse emittance needed
 - Consistent with *magnetized photocathode*

Performance of round-to-flat beam UCLA transformation

- Emittance 90 nm-rad before splitting (increase of 75% over XFEL case)
- Splitting nearly ideal in simulation, including space-charge effects

Cryostats/cryo-coolers for applications UCLA

- Developing generation of cryostats for testing at UCLA
 - Low power C-band cryogenic properties (RRR)
 - Cool-down dynamics
 - Cold test high power structures
 - Cryogenic photo-emission test stand

C-band cryo-RF infrastructure

- C-band infrastructure at LANL; cryogenic RF collaboration ongoing
- Development of MOTHRA Lab at UCLA 5 MW C-band klystron
 - SLED to obtain 20 MW for 1.6 cell gun project
- Parallel testing of room temperature systems at RadiaBeam

1st test of experimental tube

Testing Breakdown Field Limits

- 3-cell structure with optimized shape in C-band
 - Design under discussion, proceed to fabrication soon

- 1st tests at LANL
- Re-explore X-band pulsed heating with cryogenic mushroom cavity?

Future/parallel C-band RF research

- "Tantawi" structures under development at SLAC needed
 - Complete photoinjector dynamics process
 - Compact accelerator (8 m active length) for UC-XFEL
- Room temperature 50 MV/m, similar cavity shape, for DARPA GRIT compact ICS gamma project (RadiaBeam, SLAC, UCLA, U. Roma/INFN, LAL/Amplitude)

UCLA

- C-band klystron already in hand at RadiaBeam
- Key issues: RF focusing, BBU management

20x2 cell independently coupled C-band RF structure for GRIT project

Leveraging the present to the future

UCLA

- Bridge to ~\$30M project needed
- UCLA SAMURAI Lab
 - \$5M construction, \$7M legacy eqpt.
- Investments from agencies
 - DOE HEP (injector); DARPA (C-band); NSF CBB (dynamics, cryo-emission test stand); DOE NNSA (MaRIE FEL)
- Utilize collaborative expertise
 - UCLA, SLAC, UCB, LANL, Cornell Roma, UNM, ASU, INFN, FAMU, PSI, RadiaBeam, Pulsar
 - Concentrate on key techniques
 - Cryo-RF gun and linac
 - IFEL and velocity bunching
 - Short period undulators
 - Optical to EUV FEL
- Fund first prototype UC-XFEL
 - Sloan Foundation proposal (pending)
 - NSF Midscale pre-proposal (may go to R2)

