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Challenges and Promise of High EM Fields UCLA
In Structures

* Path to applications clearer than more exotic approaches
* Enable next generation instruments in HEP and photon science
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UCLA Research into High Field Structures  wskefeus

Historical emphasis at UCLA vm |
* Wakefields (mm-to-THz)
* Photoinjectors ~ \
* Fundamental high field physics SET e

Recent pivot (>2015) to cryogenic RF (0 o

Driven by urgent applications for compact, high impact accelerators
* Linear collider (C? collaboration, UCLA flat beam injector) Further generation
* Ultra-compact X-ray Free-Electron Laser (UC-XFFEL) solution

Fundamental aspects of high fields
* Beam dynamics w/large accelerating fields
RF breakdown
Dark current emission
Optimized design
Photoemission
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The science behemoth: ~TeV linear collider _—

C3 may put this is reach



Vision of a university-scale UC-XFEL UCLA

~1-1.5 GeV beam energy
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https://iopscience.iop.org/article/10.1088/1367-2630/abb16c

UC-XFEL Recipe Ingredients

 Ultra-high field electron cryogenic RF photoinjector source
* High gradient cryogenic accelerator

* Frontier simulation of collective effects (CSR, IBS)

* Beam measurements at micron/fs scale S
* Very high frequency RF devices o R -
* Advanced magnetic systems — micro-undulators and quads ==

Hybrid cryo-undulator: Pr-based,
SmCo sheath; A=9 mmupto2.2T

* Machine-learning based control
* Compact X-ray optics
* Understanding of science case

First two points enable entire scenario, based on
very high field cryogenic RF field research




Details of UC-XFEL approach explored CLA

New jou rnal Of PhySics Deutsche Physikalische Gesellschal

The open access journal at the forefront of physics
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The Ultra-Compact FEL Design Realized UCLA
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Also controls gain length and efficiency
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Parameter Units Value
Energy GeV 1.0
Energy spread % 0.1
Micro-bunch charge pC 14.2
Micro-bunch rms length, o, nm 424
Peak current kA 4.0
Normalized emittance, (€2, €ny) | nm-rad | (80, 60)
Mean spot size, o, pm 49
Radiation fundamental, )\; A 10.0
Photon energy keV 1.2
Gain length, L, 3p m 0.21
Radiation peak power GW 25
Radiation pulse energy/pbunch | pJ 19.2
Total number of photons (train) 6 x 101
p 1073 3.1
P3D 103 14
Lg3p/Lg1p 2.2
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This is the challenge. How to solve?




FEL begins life with high brightness electron UCLA
beam source: the RF photoinjector

Laser gating to fs-to-ps level

RF capture — violent acceleration
e Accelerating fields 10x DC sources
e Strong RF focusing effects — _

Preserve phase space structure | _ ]¢
* Control pulse expansion | 1 ‘
* Minimize emittance growth

e Creation, manipulation of single Gated photoelectrons
component plasma (emittance captured to MeV energies
compensation) - | '
* Frontier RF engineering - y
e Photocathode physics A ﬁ_f

Advan laser techniques
dvanced _ 9 _ Traditional UCLA-designed RF photoinjector
Apply lessons to linear collider source operated at ~100 MV/m

Rethink points in red when fields much enhanced. 8



Higher brightness at emission UCLA

. 21 2‘Imaxn/lec2
* 5D Brightness at cathode: B.= 2 LT
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* In 1D limit, peak current from a pulsed

photocathode is ece Y
J,,=~—2(E,sing,)
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* Brightnessis p _ 2ece, (E, sing, )’ Bgp with 3D
T kT, effects is similar

* Lower emission temperature and/or...

* Higher launch field
* Beat LCLS 120 MV/m (60 MV/m at injection)



High gradient acceleration at cryogenic temperature

* Recent X-band work by SLAC-UCLA collaboration on cryogenic RF cavity
research gives breakthrough surface fields
* ASE lowers heating, thermal expansion small, enhanced strength

e 200 MV/m surface fields -> 500 MV/m. ~300 MV/m limit (dark current)

* Transformative applications in photoinjector brightness
* And system compactness
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Practical concern: dark current emission UCLA

* Field emission is very large above 300 MV/m surface field
* Mitigation schemes must be explored
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A. D. Cahill, et al., Phys. Rev. Accel. Beams 21, 061301 (2018)



Challenges of Dark Current UCLA

* Fowler-Nordheim emission Polished stainless %

: : steel
A(B(S)Eq(s))’ ( - Bu(y)$,’ )

8.20) T\ BOEs) |
* Field enhancement factor f(s) typically ~50

e Surface contamination at atomic level
e Large dark current

Jen(s) =

* Threat to applications (esp. low charge) Silicon oxyni’;ride %
* Active measures (fast kickers) coating
* Add surface coating -
* Silicon oxynitride eliminates emitters; high work e
function e ———
* Graphene (transparent) e
* Experimental demonstration needed o — .
« Needle tests at AWA Field emission surface scan

. . for SINO (Theodore et al.)
* Bulk material solutions

12



UCLA C-band Cryogenic Photoinjector Project UGLA

* Cryogenic C-band photoinjector at extreme high brightness for FEL

Profit from very high fields (up to 250 MV/m) on photocathode;
higher spatial harmonics
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R. Robles, et al., https://arxiv.org/abs/2103.08789 (sub. to PRAB)



https://arxiv.org/abs/2103.08789

Cryogenic solenoid UCLA

* High field, compact solenoid; high current density
* Cryogenic operation gives robust solution
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Enhanced 6D Brightness with high field UCLA

e High current (nearly 20 A) at 100 pC

* Very low energy spread — required new approach to IBS calculation
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Higher brightness through UCLA
lower emission temperature

 MTE of photo-electrons can be notably lower at cryo-temperatures

* Eliminate Fermi-Dirac tail. Cold beams
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Issue: two-photon and heating effects due to high laser power
16



Half-cell cryogenic photo-emission test stand UCLA
* Up to 120 MV/m field in 0.5 cell geometry, in cryostat
* Precision solenoid, very low emittance diagnostics (10 meV MTE)

* Load-lock photocathode assembly

0.5 cell gun with copper cathode (no load lock) A
Under construction (support from NSF CBB) Cryo-emission test bed



Asymmetric emittance beams for linear colliders

 Eliminate electron damping ring
* Round-to-flat beam transformation

* VVery small 4D transverse emittance needed

* Consistent with magnetized photocathode

- Solenoid
Cryostat | B, T ‘ ' k

1.6 cryogenic

photoinjector Skew Quads
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Performance of round-to-flat beam UCLA
transformation

* Emittance 90 nm-rad before splitting (increase of 75% over XFEL case)
* Splitting nearly ideal in simulation, including space-charge effects
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Cryostats/cryo-coolers for applications UCLA

* Developing generation of cryostats for testing at UCLA
* Low power C-band cryogenic properties (RRR)
e Cool-down dynamics
e Cold test high power structures
* Cryogenic photo-emission test stand

V/m A/m
1.65e+8
1.4e+8
1.2e+8
le+8
Be+7
6e+7
4e+7
2e+7




C-band cryo-RF infrastructure UCLA

e C-band infrastructure at LANL; cryogenic RF collaboration ongoing

* Development of MOTHRA Lab at UCLA — 5 MW C-band klystron
e SLED to obtain 20 MW for 1.6 cell gun project

1st test of experimental tube
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Testing Breakdown Field Limits

 3-cell structure with optimized shape in C-band
* Design under discussion, proceed to fabrication soon

e 1t tests at LANL
* Re-explore X-band pulsed heating with
cryogenic mushroom cavity?

UCLA




Future/parallel C-band RF research UCLA

e "Tantawi” structures under development at SLAC needed
 Complete photoinjector dynamics process
 Compact accelerator (8 m active length) for UC-XFEL

* Room temperature 50 MV/m, similar cavity shape, for DARPA GRIT
compact ICS gamma project (RadiaBeam, SLAC, UCLA, U. Roma/INFN,
LAL/Amplitude)

e C-band klystron already in hand at RadiaBeam
» Key issues: RF focusing, BBU management

20x2 cell independently coupled
C-band RF structure for GRIT project



Leveraging the present to the future UCLA

SAMURAI bunker (just completed
Bridge to ~$30M project needed unker (just completed)

UCLA SAMURAI Lab .

. 5045, 60 MW.klystron
* S5M construction, S7M legacy eqpt.

Investments from agencies '
* DOE HEP (injector); DARPA (C-band); NSF CBB i o8
dynamics, cryo-emission test standj; DOE NNSA =

MaRIE FEL)

Utilize collaborative expertise
* UCLA, SLAC, UCB, LANL, Cornell Roma, UNM, - e

d 3m and 1.5m linacs,
and hybrid injector

. M xe' -
ASU, INFN, FAMU, PSI, RadiaBeam, Pulsar ’Sﬁfwo*“e Ao
* Concentrate on key teChanues {eeexperimental beamlines with
° Cryo_RF gun and ||nac . x-ray, plasma, laser, and electron diagnostics
« IFEL and velocity bunching Sloan optical FEL at SAMURAI
* Short period undulators NSF CBB MOTHRAcryo-RF L
« Optical to EUV FEL emission test stand i 04

Fund first prototype UC-XFEL
* Sloan Foundation proposal (pending)
* NSF Midscale pre-proposal (may go to R2)




