Smart*Light

CURRENT ACTIVITIES AND FUTURE CONCEPTS HIGH GRADIENT WORKSHOP 2021

Thomas Lucas on Behalf of the TU/e Team

CQT Group

Contents

- 1. Brief Overview of Smart*Light
- 2. 50-Cell High Gradient X-band Linear Accelerator
 - a) Design
 - b) Fabrication
 - c) Tuning
 - d) Low Power Testing
- 3. High Power RF System
 - a) Klystron/Modulator
 - b) RF Pulse Compressor
- 4. A new injector for future Compact Light Sources
- 5. Conclusion

Smart*Light: A Compact ICS

• Smart is a Compact Inverse Compton Scattering Xray Source (ICS) based on high gradient technology.

Main Attributes:

- DC photoinjector with 1.5 GHz bunching cavity.
- 50-cell CLIC-style linear accelerator operating between 50-75 MV/m.
- Powered using high power RF infrastructure from CERN's Xbox 3.

Bridging the gap

• Compact ICS Xray sources aim to bridge the gap between synchrotron light source bending magnets and lab sources.

•Bring tuneable X-ray sources to the lab.

50-Cell X-band Accelerating Structure

DESIGN, FABRICATION AND TUNING

Fabrication

TU/e

Fabricated by VDL

Alignment, Bonding and Brazing by BodyCote and CERN

Tuning @ CERN

Before

Performed by Hikmet Bursali and Rolf Wegner

Low Power Testing @ CERN

Performed by Hikmet Bursali and Rolf Wegner

High Power RF System

CURRENT STATUS

Klystron and Modulator

- E37113 klystron original design
- Klystron 1: Window broken in factory of modulator. No conclusion provided on the cause. Early 2020.
- Modulator arrived: November 2 2020
- Klystron 2: Klystron borrowed from CERN. Xbox 3's original klystron with phase jump. Window brazing problem? Gun voltage reduction to 7.7 V from expected 15 V.
- Klystron 3: Installation to occur in coming week. Borrowed klystron from CERN.
- Klystron 1: Being fixed. Expected arrival 1-2 months.

RF Pulse Compressor

- Fabrication:
 Vacutech (NL)
 Brazing:
 Mat-Tech (NL).
- Tuning:
 Each Cavity
 tuned to within
 kHz of one
 another.

3. RF testing:

$$Q_L = \frac{f_0}{\Delta f} = 51,600$$

 $\beta = \frac{1+S_{21}}{1-S_{21}} = 2.96$

4. Installation: Installed in March 2021 and pumped down to ensure that all connections were OK. Ready for high power.

High Power RF Components

Pumping Port

Directional Coupler

Splitters

3D printed Load

Low Level RF System

OVERVIEW

Overview of the Low Level RF

150 fs @ 100 Hz to 1 MHz

X-band TW RF photogun

A CONCEPT STUDY

Reason for a new injector

Temperature requirements on 1.5 GHz buncher are very tight <10 mK.
No need for GHz rep. rate gun when structure has a kHz repetition

rate limitation.

- Simplify the RF system.
- Bunch charge increase leading to a greater brilliance.

X-band Travelling-wave Radiofrequency photogun

Electric field Distribution

Peak Surface fields

Parameter	Value	Unit	
Length	216	mm	
Regular Cells	24		
Phase Advance	120	degs	
Frequency	11.994	GHz	
Attenuation	-2.26	dB	
Power	27.5	MW	
Fill time	50.2	ns	
Gradient	73.4	MV/m	
Peak Cathode field	120	MV/m	
Peak Surface E field	215	MV/m	
Peak Modified Poynting Vector	3.18	MW/mm^2	
Average RF Power	1.381	kW	
Peak Steady State Temperature rise	10	K	
Pulsed Surface Heating ($\tau = 50 \text{ ns}$)	7.75	K	
Peak Magnetic Field	0.6	Т	
Repetition Rate	1	kHz	
Flow Rate	15	L/min	

Thermal Simulations

Start-to-end Beam Dynamics

- Beam dynamics calculations performed in GPT using 100k particles and full 3D space charge.
- Full three dimensional map included to understand higher order mode effects on beam.

Bunch Charge [pC]	10	40	80
Electron Bunch Energy [MeV]	33.8	33.8	33.8
Electron Bunch Energy Spread [%]	0.05	0.1	0.15
Electron Bunch length RMS [fs]	371	465	523
norm. x emittance [mm mrad]	0.103	0.335	0.485
norm. y emittance [mm mrad]	0.098	0.266	0.72

Conclusions and Future Work

DESIGN STUDY

Conclusions and Future Work

- An accelerating structure designed specifically for low energy electron capture has been designed, fabricated, tuned and tested at low power through a large collaborative effort between TU/e and CERN.
- The accelerator will begin high power testing this year with the waveguide network being assembled.
- Several HPRF components using the designs developed for CERN's test stands have been fabricated and operate within specification.
- Low level RF system designed and built in-house. Calibration underway.
- A new TW X-band RF photogun has been designed for compact light sources like Smart*Light with the idea that this may one day replace the DC photogun and adjusted X-band accelerator.

Thank You for Listening and Special Thanks to:

TU/e Team: Peter Mutsaers, Tom Lucas, Xavier Stragier, Marco van der Sluis, Jom Luiten.

CERN Team particularly Nuria Catalan-Lasheras and Gerry McMonagle

PSI: Paolo Craievich and Riccardo Zennaro

SLAC: Valery Dolgashev

