Summary of Supernova T0 Studies

Erin Conley October 16, 2019 SNB/LE Working Group Meeting

Outline

- Introduction
 - Toy corrections
 - Factional difference from true neutrino energy
- T0 Studies:
 - Intrinsic resolution
 - Fraction of events in the largest peak
 - Studying the secondary peak (neutron emission)
- Summary

Introduction

Energy (GeV)

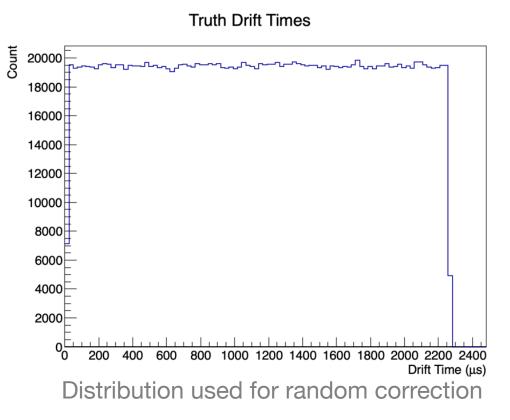
10/15/19

- Toy drift correction scheme to understand effects of PD system on supernova events
 - Use efficiency matrices corresponding to different PD performances
 - Studying energy resolution in MARLEY MCC11 clean events

Duke UNIVERSITY

0.045 0.9 0.04 0.8 0.035 0.7 0.03 0.6 0.025 0.5 0.02 0.4 0.015 0.3 0.01 0.2 0.005 0.1 -200 300 -100 100 200 Position (cm)

Example efficiency matrix corresponding to 2.5% ARAPUCA; color scale represents probability of successful flash matching

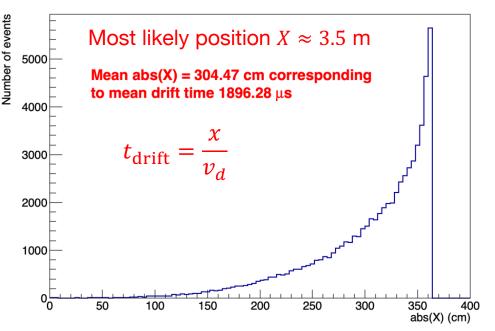

Re-binned Efficiency Matrix for 2.5% efficiency

Toy Drift Correction Scheme: "Random T0"

10/15/19

- Given MARLEY neutrino energy and distance from APA, find probability in efficiency matrix (different PD performances)
- Throw a random number [0.0, 1.0] to determine what correction will take place:
 - If less than efficiency, drift correct with MC truth T0
 - If greater than efficiency, correct with a random T0

Duke UNIVERSITY

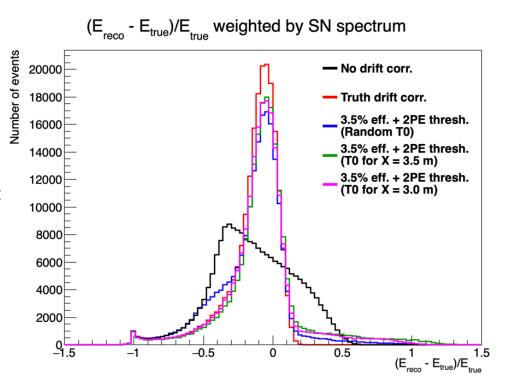

Other Toy Correction Schemes

10/15/19

- For events that don't find flash in toy method, drift correct with specific MC truth T0
 - Use mean, most likely position of events that don't have OpFlash's

Duke UNIVERSITY

 Essentially making the assumption that we can identify bad flash matches abs(X) for events without OpFlashes



Comparing Toy Corrections

10/15/19

- Determine effect of different drift correction methods by comparing fractional difference distributions
- Right: $(E_{reco} E_{\nu})/E_{\nu}$ distributions (weighted by SN energy spectrum)
 - "Random T0" less likely to over-correct and performs the worst among the three toy methods
 - All three toy methods introduce "positive tail" corresponding to overcorrection
- Going forward, we focus on the method using T0 for X = 3.5m

Duke

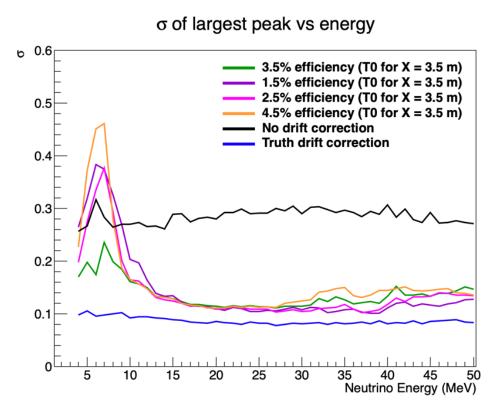

Studying "Intrinsic" Resolution

10/15/19

- Capture "true" resolution (i.e., resolution for events without nucleon emission)
- From histogram of $(E_{\rm reco} E_{\nu})/E_{\nu}$, find largest peak and fit with gaussian
 - Fit window (largestPeak RMS, 1.0); σ is the parameter of interest
 - Window definition not constant, more motivated, includes positive tail introduced by toy methods
- This method doesn't work for "no drift corr." distribution due to different behavior

Duke

Fractional difference from true energy: 30 MeV bin



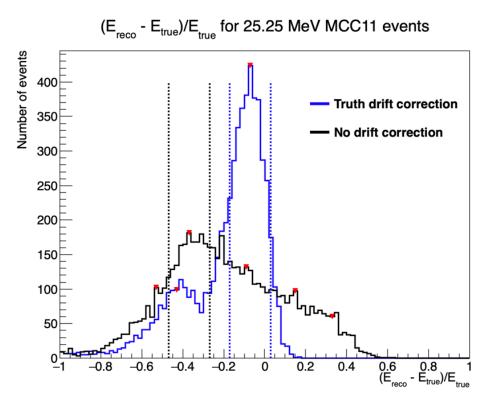
Intrinsic Resolution vs Energy

10/15/19

- "No drift corr." curve stable at ~30%; "truth drift corr." stable at ~12%
- Worse performance for PD systems at low energies
- Intrinsic resolution should be ~constant versus energy; doesn't capture over-correction effect

Duke

Studying Drift Correction Effects

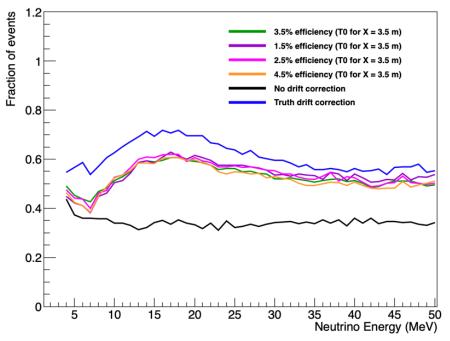

10/15/19

- Fraction of events in largest peak; considered region (LargestPeak – 0.12, LargestPeak + 0.12)
 - 0.12 chosen as the intrinsic resolution of largest peak (from "truth drift corr." distributions)
 - Metric:

Dukeuniversity

of events in region

Total # events

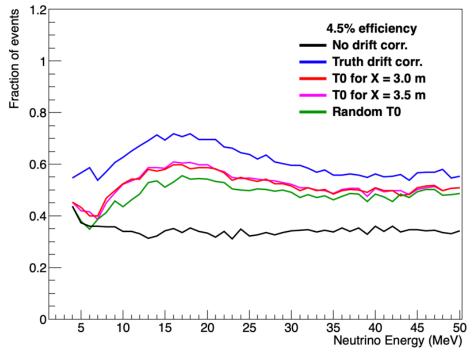

Fraction of Events vs E_{ν}

10/15/19

- Similar performance among PD systems, same behavior as "truth drift corr."
- Improved performance up to 15 MeV: electrons have more energy to deposit; before neutron emission can occur
- Above 15 MeV, performance worsens and eventually stabilizes due to neutron emission carrying away some of the energy

Duke UNIVERSITY

Fraction of events within ± 0.12 of largest $(E_{reco} - E_{\nu})/E_{\nu}$ peak

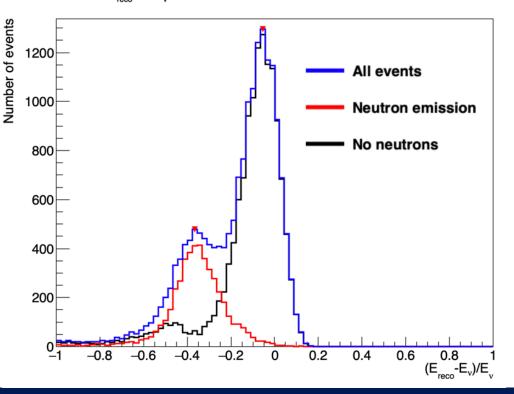

Comparing Drift Correction Methods

10/15/19

- Random T0 method performs the worst among the three toy methods
- Other two corrections tend to perform similarly – large, susceptible to overcorrection

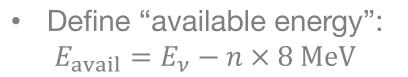
Duke

Fraction of events within ± 0.12 of largest $(E_{\rm reco} - E_{\nu})/E_{\nu}$ peak: 4.5% ARAPUCA

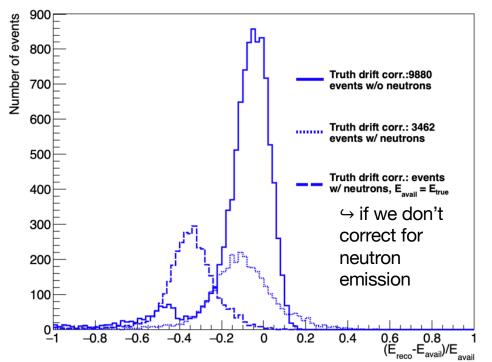

Studying the Double Peak

10/15/19

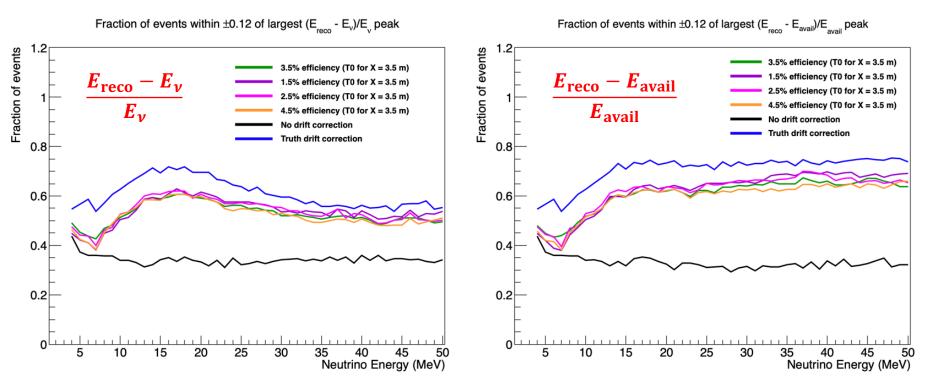
- For many E_{ν} values in the $(E_{reco} E_{\nu})/E_{\nu}$ distributions, double peak behavior appears
- Split events depending on whether neutron emission occurred; double peak predominantly contains events with neutron emission


Dukeuniversity

 $(E_{reco}-E_v)/E_v$ for truth drift corr. and $E_v = 30$ MeV: 4.5% efficiency


Available Energy

10/15/19


- n: number of neutrons emitted
- Using *E*_{avail}, we can correct for the energy loss due to neutrons (if we can figure out which events have neutron emission!)

Duke

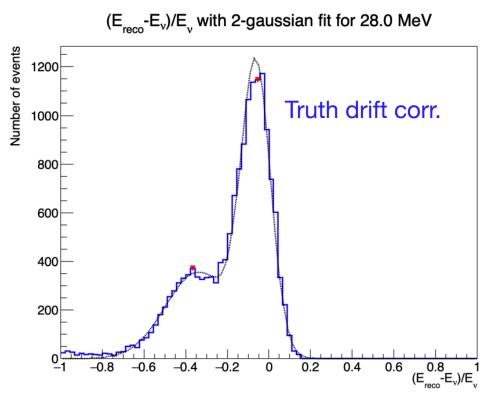
Fractional difference hists for 30 MeV bin: 2.5% efficiency

Impact of E_{avail} on metric plots

Same behavior at low energies; biggest improvements above 20 MeV

10/15/19

EUTRINO EXPERIMENT

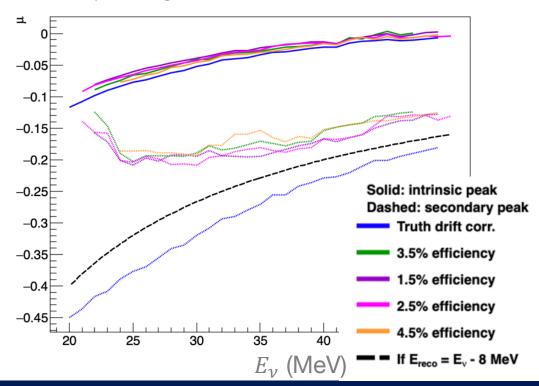

Duke UNIVERSITY

Two-Gaussian Fit

10/15/19

- Fit the two peaks using two-gaussian fit in order to study behavior versus E_{ν}
 - Find preliminary parameters using individual fits over range [peakLocation - 0.18, peakLocation + 0.18] on the two peaks
 - Total fit over [-1, 1]

Duke UNIVERSITY

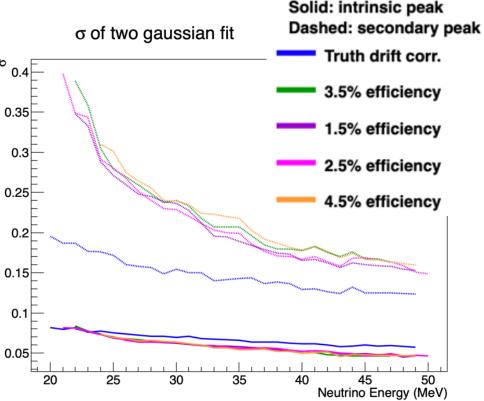

Two-Gaussian Fit: μ

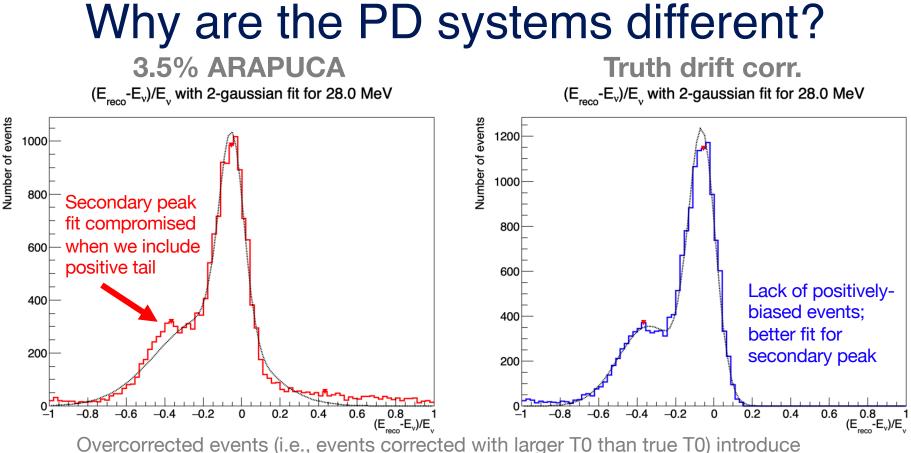
10/15/19

- Intrinsic peak has less energy loss (smaller μ) compared to secondary peak
- Secondary peak for truth drift corr. has expected shape for ~constant energy loss over entire range
 - PD performance types do not exhibit this behavior; μ remains ~constant over energy range due to overcorrected events

Duke UNIVERSITY

 μ of two gaussian fit for different drift corr.




Two-Gaussian Fit: σ

10/15/19

- Intrinsic peak narrower (smaller σ) compared to secondary peak
 - PD systems have slightly smaller σ compared to truth drift corr.; effect due to overcorrected events
- Secondary peak becomes narrower as E_{ν} increases

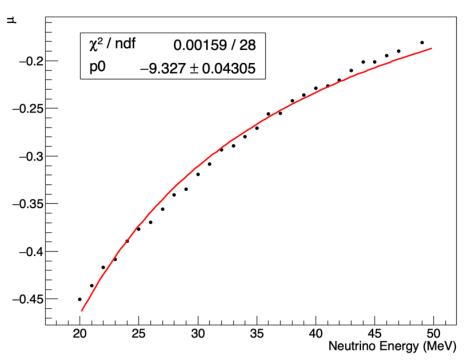
Duke UNIVERSITY

positive tail in distributions for PD systems; produces behaviors seen in μ and σ plots

10/15/19

NEUTRINO EXPERIMENT

Dukeuniversity


Measuring the Energy Loss

10/15/19

- Truth drift corr. had expected behavior of constant energy loss over entire E_{ν} range
- Fit $y = -\frac{p_0}{E_v}$ to measure energy loss

Duke UNIVERSITY

 ~9.3 MeV over the entire range, consistent with neutron binding energy + a little extra lost! μ of smaller (double) peak for truth drift corr.

Summary

- Various PD systems produce similar results in energy resolution performance for SNB neutrinos
- Nucleon emission plays role in the high-energy regime of SNB neutrinos
 - Two-gaussian fit enabled us to study how the two $(E_{reco} E_{\nu})/E_{\nu}$ peaks change versus neutrino energy
 - Also enabled preliminary fit of energy loss

Backup Slides

Drift Correction Reminder

10/15/19

True drift correction

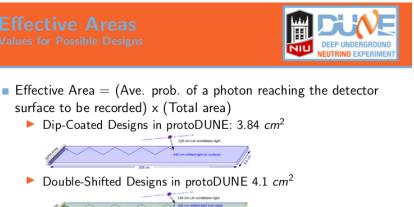
•
$$Q = Q_0 \exp\left(\frac{x}{v_d \tau_e}\right)$$

Duke UNIVERSITY

- Q: Truth charge
- Q_0 : Observed charge
- x: Distance from electron vertex to APA (MC Truth)
- v_d : Electron drift velocity
- τ_e : Electron lifetime

Reco drift correction

•
$$Q = Q_0 \exp\left(\frac{t_0}{\tau_e}\right)$$


- Q: Truth charge
- Q_0 : Observed charge
- τ_e : Electron lifetime
- t_0 : Reco interaction start time
- Find t₀ using photon flash, reco hit information (used longest track as reco electron track)

PD Performance Types: Reminder

10/15/19

- Motivation: evaluate photon detector requirements for SN physics; coupling physics to PD performance
- Distinguish photon detector performance variations based on "effective area"
 - Right: slide from a <u>talk</u> by Logan Rice

Duke UNIVERSITY

Various Arapuca Designs: 5.12 cm², 12.80 cm², 23 cm²

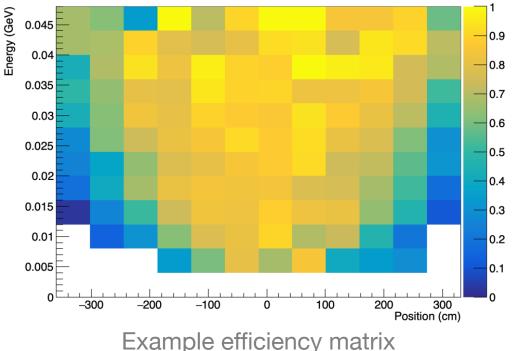
Bug found in March 2019

- Previously: code made the assumption that the events' interactions always began at t = 0
 - True for the MARLEY events but we can't make that assumption in real life...
 - This is probably why truth/reco drift corrections looked so similar
- Fixed by only drift correcting events with photon flash information
 - If the event does not have photon flash information, then we don't know when the interaction started, and thus we can't drift correct the event
 - Updated calibration constants

Efficiency Matrix

10/15/19

 Probability of successful flash matching as a function of energy and distance from APS

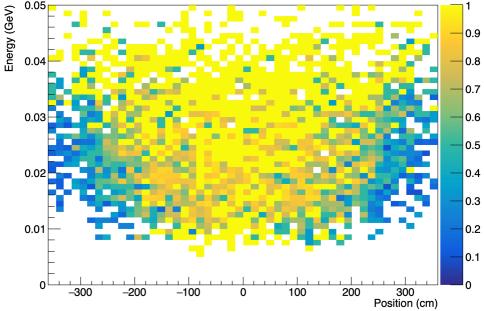

Re-binned; see <u>backup</u>

 Stringent efficiency definition (finding largest flash with distance cut associated with event)

Duke UNIVERSITY

 Example matrix shown here; events farther from APA less likely to find photon flash

Re-binned Efficiency Matrix for 2.5% efficiency


Un-binned Efficiency Matrices

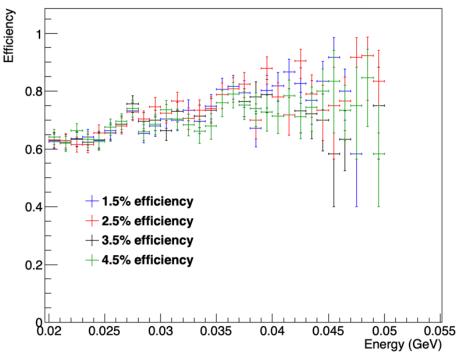
10/15/19

- Efficiency matrix: Probability of successful flash matching given true neutrino energy, distance from APA
- Less statistics compared to previous efficiency matrices; re-binned to reduce number of "holes"
 - Merged 4 bins into 1 for both axes

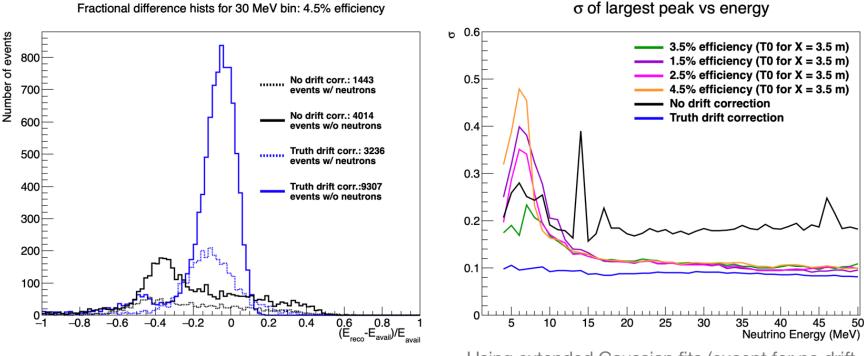
Duke UNIVERSITY

Efficiency Matrix for EFF15QENonRefI1PE

1.5% QE (before re-binning)


Understanding intrinsic resolution behavior

10/15/19


- 1.5% ARAPUCA actually has the best performance for mid to high energies, while 4.5% ARAPUCA has the worst
- Efficiency matrices contain the same behavior (see righthand plot); shows limitation in efficiency matrices

Duke UNIVERSITY

Selected efficiency vs neutrino energy

Using *E*_{avail} definition

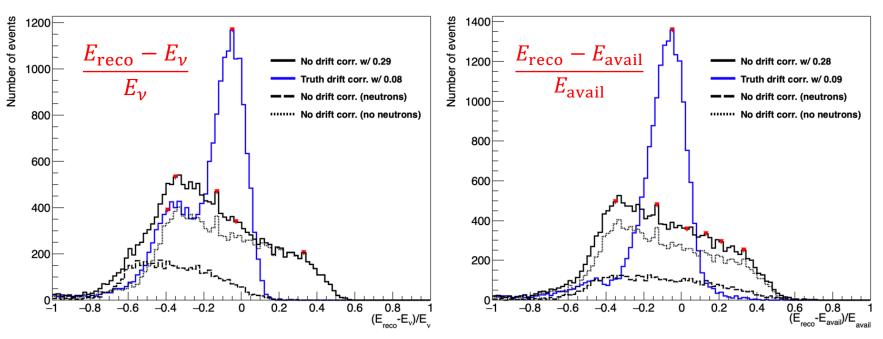
10/15/19

This plot implies that the "no drift corr." events with neutrons don't benefit from E_{avail} definition

EUTRINO EXPERIMENT

Duke UNIVERSITY

Using extended Gaussian fits (except for no drift corr.); "no drift corr." does improve, but overall same behavior


Sanity check the "no drift corr." plots

Fractional difference hists for 30 MeV bin: 4.5% efficiency

EUTRINO EXPERIMENT

Duke UNIVERSITY

Fractional difference hists for 30 MeV bin: 4.5% efficiency

The no drift corr. + neutron sample is corrected with the E_{avail} definition, but the distribution is so widespread that the correction is drowned out

10/15/19