Status of Stripline Feedthrough Prototype Development

T. Sekiguchi

2019. 10. 23

- Summary of the first prototype test @ J-PARC
- Test of pre-treatment using simple test piece
- Status of prototype modification

• 0.05 MPa gauge He pressure applied

He Leak Test

• He leak observed from stripline surface

Sylgard detached from stripline

October 23, 2019

• Another He leak point at stripline

October 23, 2019

He Leak Rate

- High voltage applied to the prototype
 - Leakage current is measured

- All electrodes vs ground
- Leakage current suddenly increased at ~3.5 kV

October 23, 2019

- Positive-side vs negative-side electrodes
- Leakage current suddenly increased at ~3.0 kV

• Test at manufacturing company

- Actually 0.15 MPa gauge N₂ pressure applied
- The prototype once evacuated which might break the sealing
- 0.05 MPa He pressure applied to the prototype
 - Observed He leakage at least from two points
 - Observed leak rate = $1.83 \times 10^{-2} \text{ Pa} \cdot \text{m}^{3}/\text{s}$

High voltage test

- Withstand voltage to be ~3 kV which doesn't satisfy requirement of 5 kV
- Proposed countermeasures
 - Pretreatment of aluminum surface needed
 - Apply a primer between striplines and Sylgard
 - Roughing aluminum surface
 - These pretreatment should be tested with simple test pieces

Test Piece

- Sylgard tests performed with some simple test pieces in the company
 - Test item
 - Sylgard only
 - Primer (RTV-157) + Sylgard
 - Roughed surface + Sylgard
 - Applied N₂ 0.05 MPa (0.5 atom) gauge pressure to the test pieces

October 23, 2019

Pretreatment #1

Window piece

RTV applied to the surface and wait for 24 hours

- RTV actually got hard in a short time
- Difficult to make a smooth surface

Pretreatment #2

Sylgard only

RTV + Sylgard

- Sylgard applied
- Evacuation
- Wait 48 hours for curing

Pretreatment #3

Blast finished surface

Blast + Sylgard

- Blast finishing
- Slygard applied
- Wait 48 hours for curing

Pressure Test

Pressure vessel

View from bottom

 Window piece attached to the pressure vessel

Sylgard Only

- Pressure applied gradually, but large sound heard around 0.04 MPa
- Then pressure dropped immediately
- Due to a clean surface Sylgard didn't withstand that pressure

RTV + Sylgard

↓ After 24 hours

Setup

During pressure applied

- 0.05 MPa pressure applied for 24 hours
- Sylgard surface didn't move during this period
- No pressure drop observed after 24 hours

Blast + Sylgard

Under pressure

Sylgard moved a bit

After 24 hours

- 0.05 MPa pressure applied for 24 hours
- A slight pressure drop (~0.002 MPa) observed
- Sylgard surface inside the vessel moved a bit

Condition	Result	OK/NG
Sylgard only	Cannot withstand 0.04 MPa	NG
RTV + Sylgard	Withstand 0.05 MPa for 24 hours	OK
Blast + Sylgard	0.05 MPa pressure applied for 24 hours but 0.002 MPa pressure drop observed	NG

- RTV + Sylgard is promising
- Longer-term tests will be performed at KEK

- Long-term pressure test performed at J-PARC
 - Pressure gauge : measures absolute pressure 0~300kPa
 - Infrared thermo-meter to measure temperature ⇒ measure temp. at outer case
 - At first, He leakage test with blank flange to check any leakage other than test piece
 - No visible pressure drop observed

- Pressure test performed during August 21-26
- 0.05 MPa gauge pressure applied to the test piece with Sylgard + RTV
 - 149.1 kPa @ August 22 5:00am
 - 146.8 kPa @ August 26 9:00am
 - -2.3 kPa for 100 hours
 - Temperature variation during this period 2.5°C
- Measured leak rate to be 6.3x10⁻⁷ Pa•m³/s

• Modifications

- Width of G10 plates to be same as that of striplines
- Application of RTV before filling Sylgard
- Improved bottom sealing for pouring Sylgard

Prototype Modification

October 23, 2019

Prototype Modification

Current status

- Parts production completed
- RTV primer applied to the striplines
- Assembly of sealing parts already done
- Initial Sylgard filling done, additional filling tomorrow

• To do

- Pressure test at company to be done next week
- Pressure test at J-PARC in November

- RTV primer applied to the aluminum surface
 - The surface where G10 plates are attached are masked

Prototype Modification

• Assembly completed

• Bottom sealing plates attached

Prototype Modification

• The feedthrough to be inserted in the vacuum chamber

- Vacuum degassing of Sylgard
- Sylgard filled to the feedthrough

Prototype Modification

- Vacuum degassing in the chamber
- Tiny leakage of Sylgard occurred
 - But significant improvement on sealing
- Then waited 48 hours for curing
- Add small amount of Sylgard to the leaked point

- Corona discharge test is suggested
 - Apply 8kV(peak) AC voltage and measure corona charge
- Dedicated instruments are needed
 - Fujikura Dia Cable B010
 - Cost is \$40k too expensive
 - Looking for a possibility to rent the instrument

Fujikura Dia Cable B010