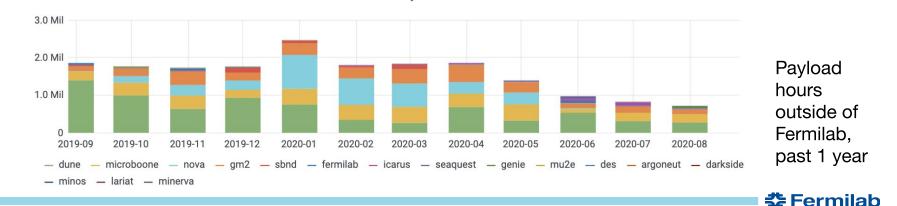


Fermilab and OSG: Perspectives from neutrino, muon, and astronomy experiments

Ken Herner, Alex Himmel, Robert Illingworth, Mike Kirby September 3, 2020

The non-CMS Landscape at Fermilab

- Fermilab is the host laboratory for **DUNE**
- Hosts a number of other <u>neutrino</u>, precision <u>muon</u>, and <u>astrophysics</u> experiments
- The <u>FIFE</u> Project aims to provide a common, modular toolset for these experiments (and others who wish to use them, e.g. EGP), including
 - Job submission and monitoring
 - Workflow management software
 - Data management and transfer tools
 - Continuous Integration service
- Regular users of StashCache (see backup)


Some experiments currently using FIFE tools

Remote resources via the GWMS factory

- Like CMS, most FNAL experiments use GlideinWMS for job access
 - Shared pool for non-CMS experiments (DUNE may create its own global pool soon)
- Major success in 2019-2020 has been the automatic Singularity rollout
 - Invoked via GlideinWMS, users only need set the SingularityImage classad if they don't want default image (the default is made to look like FNAL WNs)
 - Removes the major impediment to user jobs outside of FNAL: worry about missing/incompatible system libraries

Core Hours By VO

The Short-Baseline Neutrino Program

Important precursor to DUNE

Consists of **MicroBooNE** (running), **ICARUS** (commissioning), **SBND** (late 2020); all LArTPC

Similar near-far detector concepts as NOvA/DUNE

ICARUS very interested in adopting Rucio ASAP

Common challenges:

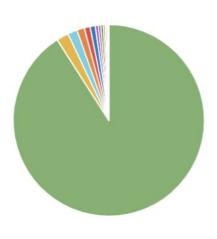
Memory footprint

Learning how to effectively use multiple cores =>

Effectively using HPC resources

Storage/data model (all are multi-PB experiments)

The Fermilab Muon Program

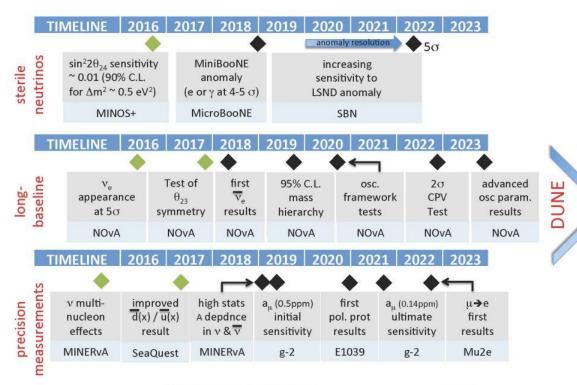

g-2: Probe hints of anomalous magnetic moment of the muon

Currently taking data

Mu2e: Look for muon -> electron decay (lepton flavor violation)

Design and construction continuing One of the earlier experiments to get

onto OSG (50 M+ hours in 2015-2016)


	total
- FermiGrid	17.5 Mil
 UColorado_HEP 	395 K
 UKI-NORTHGRID-LIV-HEP 	311 K
 UKI-NORTHGRID-LANCS-HEP 	244 K
 UKI-NORTHGRID-MAN-HEP 	190 K
 Nebraska-Lincoln 	167 K
 ICC-SLATE-HTC 	95.7 K
 NWICG_NDCMS 	82.1 K
- GLOW	77.1 K
 WSU - GRID_ce2 	67.8 K
 MWT2 ATLAS UC 	47.1 K
- INFN-PISA	30.5 K
 Nebraska-CMS 	20.4 K
 New Mexico State Discovery 	9.73 K
 Clemson-Palmetto 	4.97 K
- AGLT2	1.290 K
 Caltech CMS Tier2 	973
— T3_US_NERSC	923
- SU ITS	227
 Nebraska-Omaha 	12

Experiment schedules

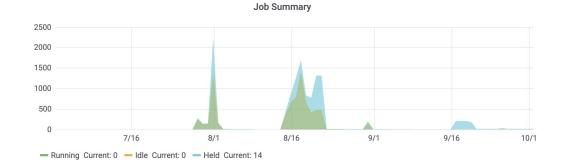
Significant overlap between running experiments in 2019-21

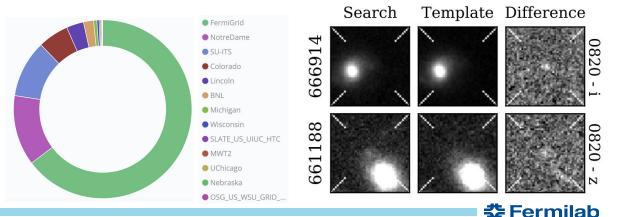
Additional challenges include DUNE Near Detector design/construction

Fermilab Accelerator Hosted Science Plan

Steve Geer | Program Planning Office

6/4/18

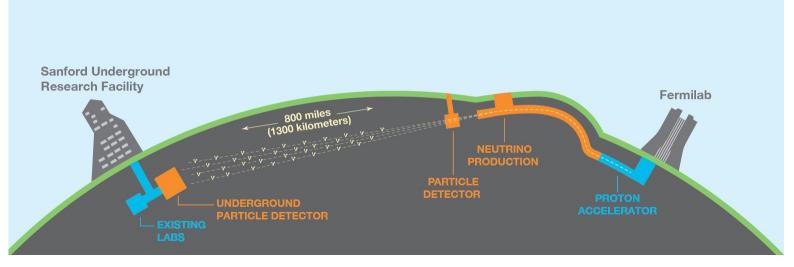

Astronomy and Astrophysics


Dark Energy Survey-

Gravitational Waves get important OSG resources

Search for optical counterparts to GW events: low demand most of the time, but rapid provisioning is the key (i.e. access to many sites)

Restructuring pipeline over next 1-2 years (was SL6/Python 2, so Singularity was important)

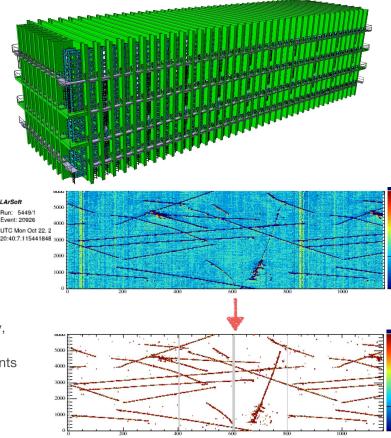


Astronomy and Astrophysics

Coming Later in 2020: Supernova studies for DES Y3 **Cosmology Analysis** (Can run embarrassingly parallel with some modifications) OSG will provide a very important relief valve for pressure on the DES NERSC allocation

莽 Fermilab

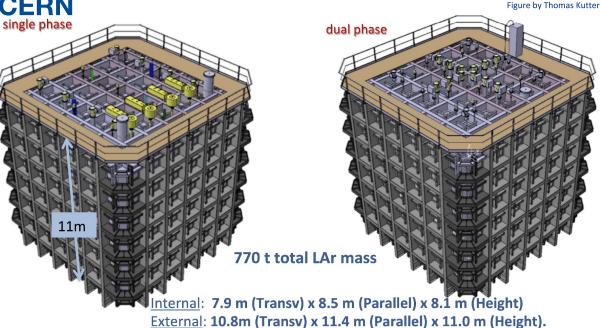
DUNE Experiment Overview


🚰 Fermilab

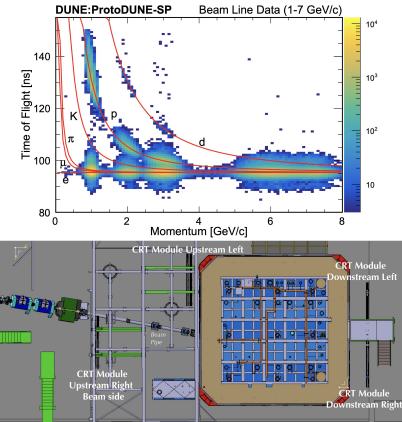
- neutrino experiment measuring neutrino oscillation parameters (mass ordering, matter vs antimatter asymmetry, unitarity), proton decay, supernova neutrinos, and more.
- Far Detector consists of 4 LAr TPC modules at 4850 ft underground in Lead, SD (SURF)
- Near Detector (proposed design) at Fermilab near the neutrino production
- baseline of 1300 km and neutrino beam optimized for oscillation measurement sensitivity
- Two prototypes at CERN (ProtoDUNE Single Phase ProtoDUNE Dual Phase)

DUNE Far Detector Design

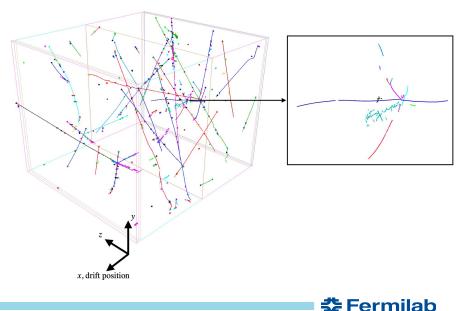
- First Far Detector build will be a single phase LAr TPC
- 17 kT of liquid Argon
- 150 Anode Plane Assemblies tiled on center and walls
- 180 kV electric field across each drift volume -> 5.4 ms drift time
- Beam timing triggered readout for oscillations physics analysis
- normal neutrino-beam trigger record is 5.4 ms
- 12-bit ADC sampled every 0.5 μs
- 2560 channels per APA
- 150 APAs 6 GB uncompressed or 2-3 GB compressed
- 5000 trigger records per day -> 5-10 PB/year/module
- · time-extended readout window of far detector module varies greatly
- continuous readout (SuperNova), calibrations, etc
- DAQ designed with greater bandwidth, but reduced with trigger, zero suppression, and compressed data format
- goal of 30 PB/year from Far Detector dominated by calibration data
- reconstruction of signals and hits spatially independent within an Anode-Plane Assembly, but 2D deconvolution and FFT require time stitching
- processing of a single trigger record can generate multiple "events" consider these events to be causally separable regions of interest
- · creation of analysis events to minimize data volume and facilitate additional processing


Far Detector SP Module

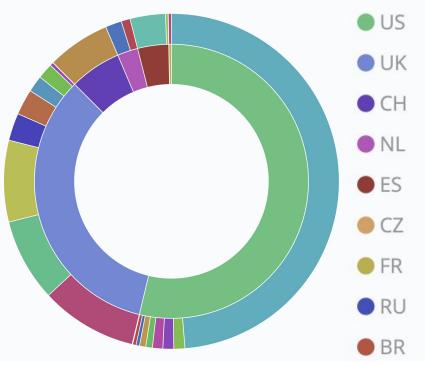
ProtoDUNE Detectors at CERN


- Construct small single-phase and dual-phase LAr TPC (~770 tonnes LAr)
- Single-phase constructed with 6 APAs (instead of 150)
- Dual-phase constructed with 4 Charge Readout Planes

Implementation of Computing Model with Data from ProtoDUNE - SP


- Single Phase beam Oct Nov 2018
- Time-of-Flight and Cherenkov tagged events
 - 300k π Momentum 1, 2, 3, 6-7 GeV/c
 - additional e, p, K events
 - 8M total beam events 600 TB raw data
- Additional > 50M cosmic events
 - 2 PB raw data (more data since recorded)
 - varying the purity, HV, Xenon doping
- utilize this large sample of data to test the Computing Model for DUNE
- Slides from Robert Illingworth next "DUNE Data Management Experience with Rucio"

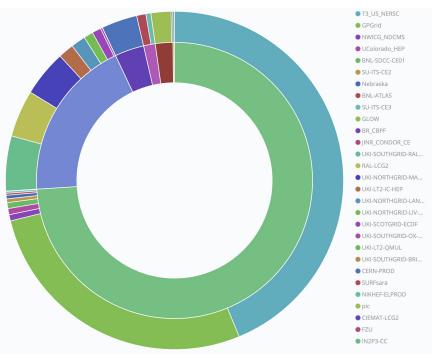
ProtoDUNE Reconstruction Processing


- Based on art framework and LArSoft physics software with ProtoDUNE specific modules
 - WireCell, Pandora libraries utilized extensively
- Processing of a 100 event (8 GB) file takes ~500 sec/event (80 sec/APA)
 - Signal processing is < 2 GB memory
 - Pattern recognition is < 4 GB memory
 - ProtoDUNE SP event is 75 MB/evt
- reduction to 20 MB/evt 2 GB files
- 25 Hz trigger rate volume is equivalent to DUNE Far Detector beam-trigger stream
- "First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform" <u>https://arxiv.org/abs/2007.06722</u>

ProtoDUNE Production Processing

- DUNE doing excellent job incorporating new Compute Elements (CE) and Storage Elements (SE) using OSG and WLCG infrastructure
 - Continue to add resources from sites around the world - 36 sites
 - Addition of Storage Elements continues 13
- Soon undertake ProtoDUNE Single Phase Production version 3 (PD-SPProd3)
- Data processing on distributed computing
 - (FNAL ~50% similar to previous usage)
- Utilizing NERSC SuperComputer Cori allocation through HEPCloud for simulation generation (10000 simultaneous jobs running ~40% of total DUNE CPU hours)
- Anticipate using 80 100 M CPU hours/year in during ProtoDUNE II operations

CPU Hour fraction Feb 1 - May 20, 2020

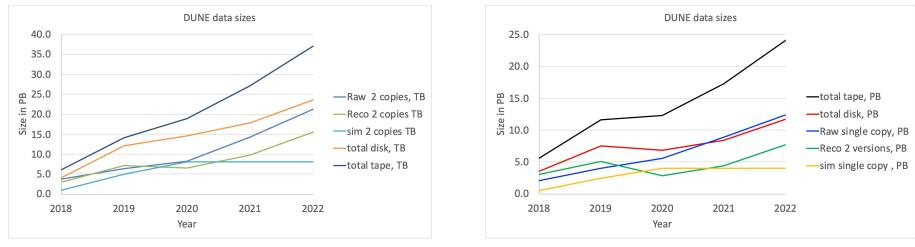

Inner Circle is country

ProtoDUNE Production Processing

- DUNE doing excellent job incorporating new Compute Elements (CE) and Storage Elements (SE) using OSG and WLCG infrastructure
 - Continue to add resources from sites around the world - 36 sites
 - Addition of Storage Elements continues 13
- Soon undertake ProtoDUNE Single Phase Production version 3 (PD-SPProd3)
- Data processing on distributed computing
 - (FNAL ~50% similar to previous usage)
- Utilizing NERSC SuperComputer Cori allocation through HEPCloud for simulation generation (10000 simultaneous jobs running ~40% of total DUNE CPU hours)
- Anticipate using 80 100 M CPU hours/year in during ProtoDUNE II operations

CPU Hour fraction Feb 1 - May 20, 2020

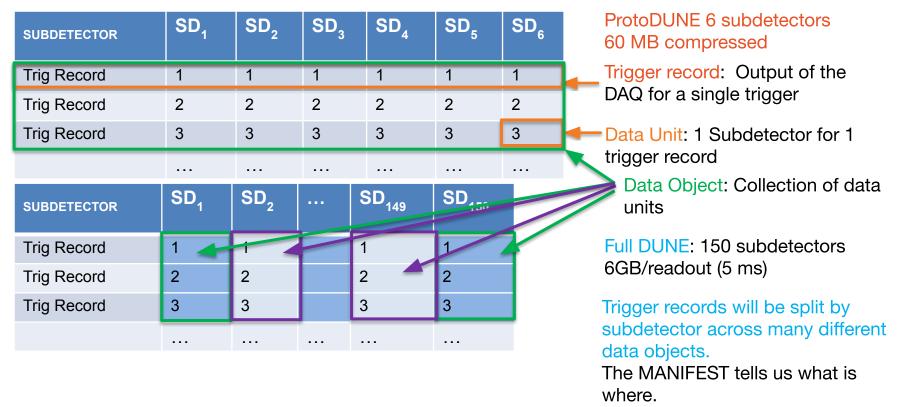
Adding in HPC @ NERSC Cori



Tape and disk storage 2018-2022

Total DUNE Storage

🛟 Fermilab


- Computing Model for DUNE Storage
 - 2 archival copies of raw, derived, and simulated data 1 copy at FNAL, second copy distributed institutions
 - production processing of SP and DP data and matching simulation twice per year
 - 2 or 3 copies of active derived and simulated datasets on disk dataset stays active for 1 year
 - late binding of between sites and jobs means that streaming of data to jobs is dominant data access pattern

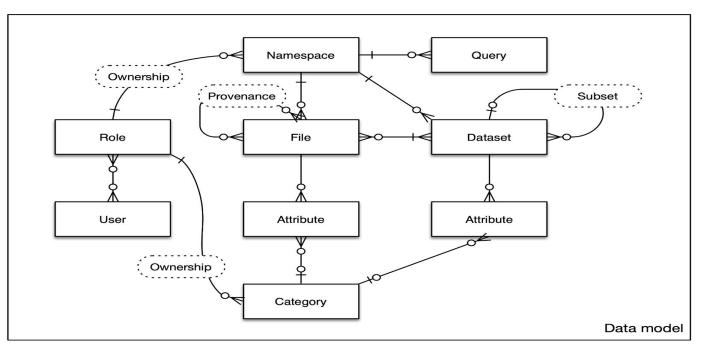
DUNE Data Management Currently

- Two ProtoDUNE detectors at CERN, each 5% of full detector size
- ~10 PB of data accumulated thus far
- Roughly half raw data, half reconstruction output products, small amount of MC. Event size ~60MB
- 36 compute sites around the world
- 13 disk only sites, 4 disk+tape sites.
- Data streamed via xrootd from the closest location.
- Very similar to other experiments that use the grid.

DUNE Data Terms

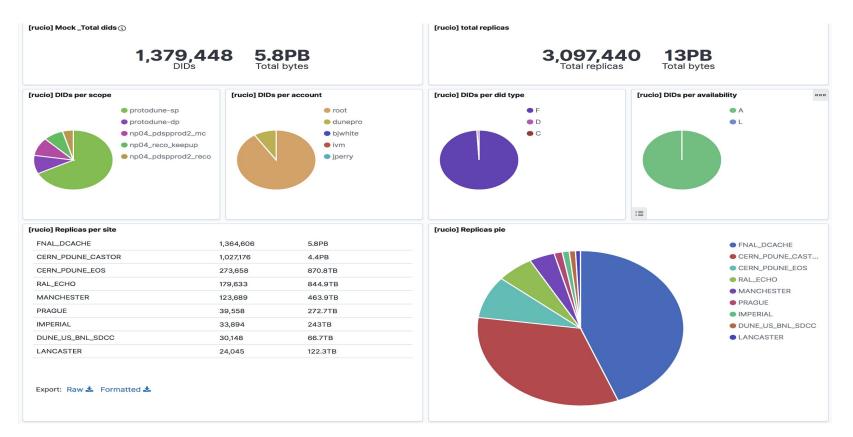
DUNE data challenges

- DUNE far detector output 30PB per year, plus more from near detector
- Subdetectors from the same trigger record may end up in multiple files
- Time slices from the same trigger record may end up in multiple files.
- In case of supernova burst readout we will have to split both by subdetector and by time slices, and get a very large volume of data out fast.
- Exploring HDF5 format to store the data instead of root
- Exploring non-file-based object stores in general.
 - A object based approach may make more sense than the arbitrary assignment to files



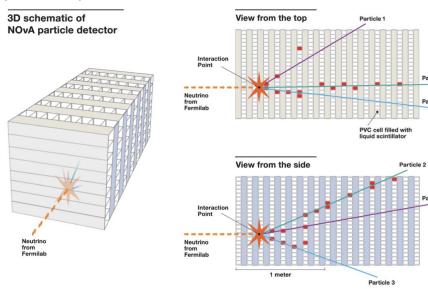
Migrating to Rucio for data management

- In the process of migrating to use Rucio for data management
- Need to replace 3 main functions of monolithic legacy system
 - Replica manager (Where is the file)-> Rucio
 - File Provenance (Metadata)
 - Data Delivery / project tracking
- Three projects needed to get there:
 - New Data Ingest service replacing legacy data transfer system.
 - New Metadata service replacing legacy metadata database
 - New Data Delivery Client service for workflow management


Metadata Server: MetaCat

- Metadata sets very similar to Rucio model
- Flexible queries and ability to combine with other databases (ie runs, beam conditions)
- Requirements are complete
- Reference implementation in testing

Monitoring and data locations

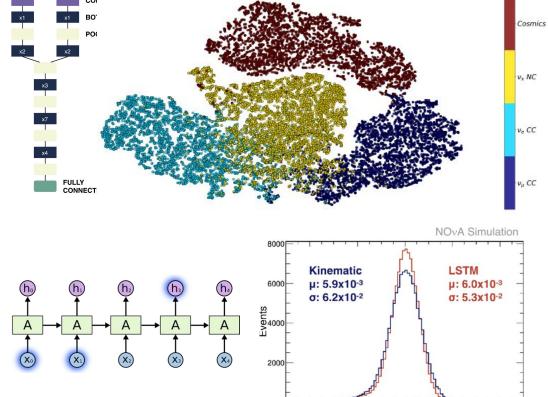

The NOvA Experiment

- NOvA is a long-baseline neutrino experiment, measuring oscillations, cross section, and exotic physics.
- NOvA detectors are homogenous, segmented, tracking calorimeters with 2 orthogonal views and few cm-scale cells.
- This detector is well-suited to many ML algorithms, and ML now plays a critical role in many NOvA analyses.

Particle 2

Particle 3

Particle 1

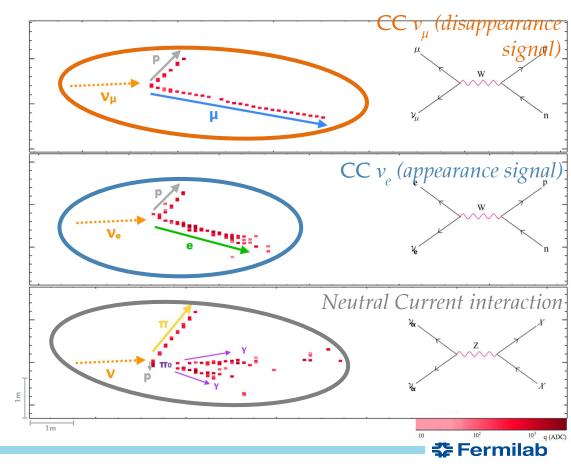


Deep Learning Applications in NOvA

- Classification with convolutional neural networks:
 - Now quite popular, NOvA was the first to apply this technique to a published physics measurement.
 - One network is used to identify the flavor of the neutrino which interacted.
 - Other networks are designed to identify individual particles in the final state.
- "Offline L1" cosmic rejection with a CNN
 - Use just whether cells are hit or not, independent of reconstruction and calibration which change over time.
- Energy estimation with multiple techniques:
 - Convolutional neural networks using event "images"
 - Recurrent neural networks (LSTMs) using a variable number of reconstructed objects.

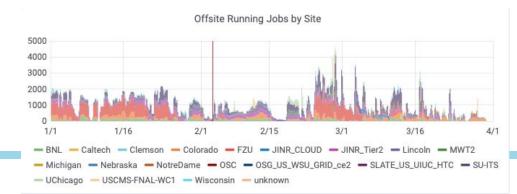
A Convolutional Neural Network Neutrino Event Classifier: https://arxiv.org/abs/1604.01444

Context-Enriched Identification of Particles with a Convolutional Network for Neutrino Events: <u>https://arxiv.org/abs/1906.00713</u>


-0.4

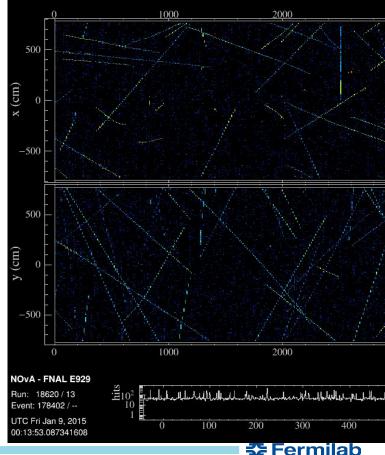
-0.2 0 0.2 Reco-True/True Energy

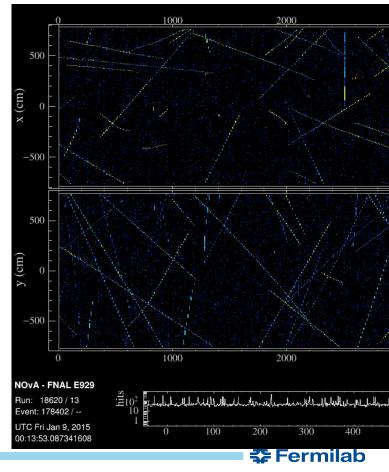
🟞 Fermilab


Training Networks

- For the most part, we have not found that resources for *training* are too constrained.
- We have used:
 - Fermilab's Wilson Cluster
 - ANL Machines
 - University GPU clusters (Indiana, Minnesota)
- Those resources all had additional hoops relative to the OSG...
 - Special account requests outside standard Fermilab computing.
 - Different architectures and disk systems which required some additional training.
- ...but this is not a problem because training is a discrete task handled by a small number of individuals.

Running deep learning as a part of standard reconstruction:


- Needed to run as part of the same process that we used for our standard reconstruction.
 - Too large a scale to re-invent production infrastructure for new sites.
 - Existing production team needed to be able to run.
- The big challenge: evaluation time.
 - Our first CNNs were extremely computationally intensive (>1/2 of our total reconstruction time).
 - However, it was inefficient to try to use limited GPU resources since there are many more CPU.
 - Slow speeds limited our ability to validate and to take risks on interesting new ideas.
- Our most recent development prioritized CPU evaluation speed.
 - Change frameworks (Caffe to TensorFlow) gave us dramatic speed-ups.
 - Moved to MobileNet v2, which gave equivalent performance but much faster evaluation time.
 - $\circ~$ Overall, sped up reconstruction by an order of magnitude.


Running with OSG GPUs:

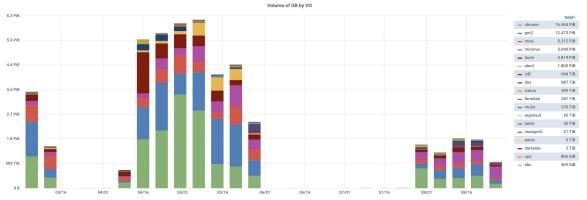
- This only made sense to try with our cosmic rejection network:
 - This is a workflow that is almost entirely ML, rather than having a large "standard reco" part.
 - The faster networks like MobileNet did not work well for this application which works with larger images.
- When we ran, we could only get access to 2 sites:
 - Syracuse had high availability of older, slower nodes
 - Nebraska had low availability of newer, faster nodes
 - $\circ~$ We have since gotten UCSD working, but not exercised it extensively.
- However, availability was such that we could only process about 10% of our dataset in the 2 months available for the processing.
- When applying this filtering to our neutrino data stream, we found 0 GPU availability and needed to run filtering on CPUs.
 - The dataset was ~similar in size to the 10% of cosmics and completed in a similar amount of time due to the much higher CPU availability.
 - But, the CPUs are a "competing" resource since all our production jobs use CPUs but cosmic filtering was unique in needing GPUs.

So, what now?

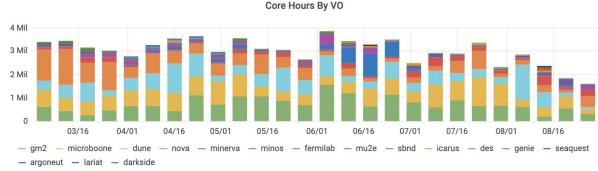
- It was pretty clear to us after this experience that we could not rely on the OSG to handle the large backprocessing.
- So, we are now exploring using HPC facilities at ANL to handle the large backprocessing.
 - HPCs with GPU accelerators were not available last year but are are now starting to come online.
 - $\circ~$ An HPC with large burst resources is better suited to this task.
- We intend to continue using the OSG, but only for "keep-up" processing of the data as it comes in.
 - Opportunistic availability is much better suited to processing a small amount of data as it comes in.
 - In keep-up, we can also tolerate a few weeks of backlog due to low availability and then recover later.

Summary

- FNAL neutrino, muon, and astro experiments greatly benefit from OSG infrastructure and expertise
- Affected by broader trends in the field (tokens, GPUs, HPC); will have to evolve accordingly



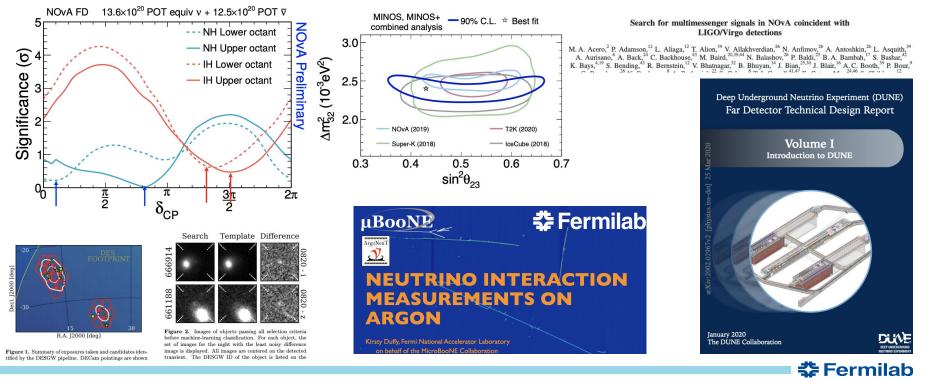
BACKUP



Supported Experiment Data and Job Volumes

- 35 experiments; more than 600 unique users
- 30+ sites in 11 countries
- About 160K jobs per day; 170M hours per year
- Combined numbers approaching scale of LHC (6-7x smaller wrt ATLAS+CMS)

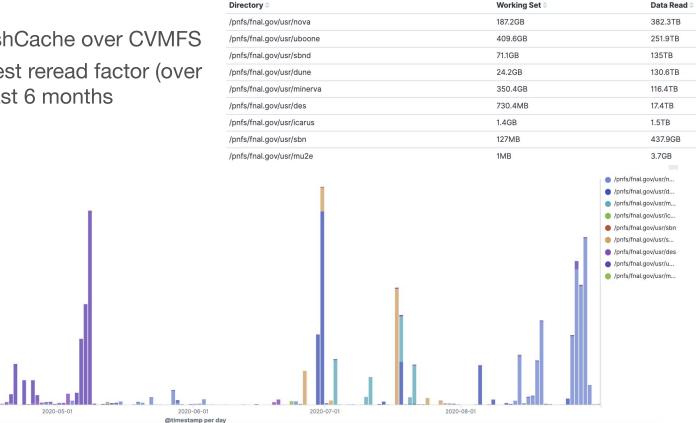
Total weekly data transferred by experiment, last 6 months


Total weekly wall time by experiment, last 6 months

🛟 Fermilab

Selected Science Results since last AHM

Stolen from roadmap talk; space to advertise results; feel free to add


PHYSICAL REVIEW D 101, 112006 (2020)

StashCache Usage

2020-04-01

FNAL expts access StashCache over CVMFS DUNE has second-highest reread factor (over 5000) of any group in past 6 months

StashCache Directory over Time

72.8TB

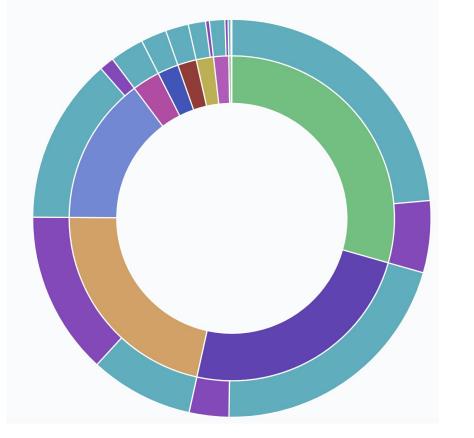
63.7TB -

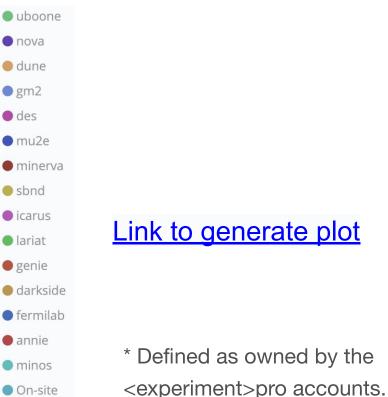
54.6TB

45.5TB

27.3TB

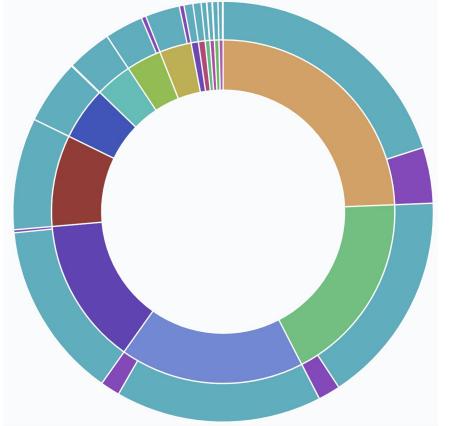
18.2TB

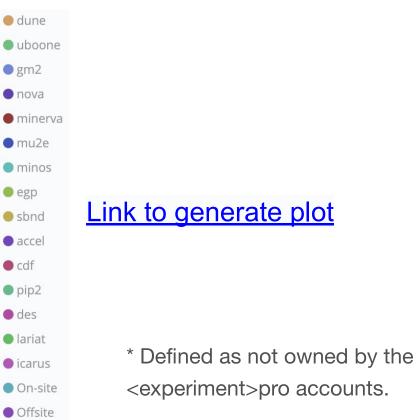

9.1TB


OB -

5 36.4TB

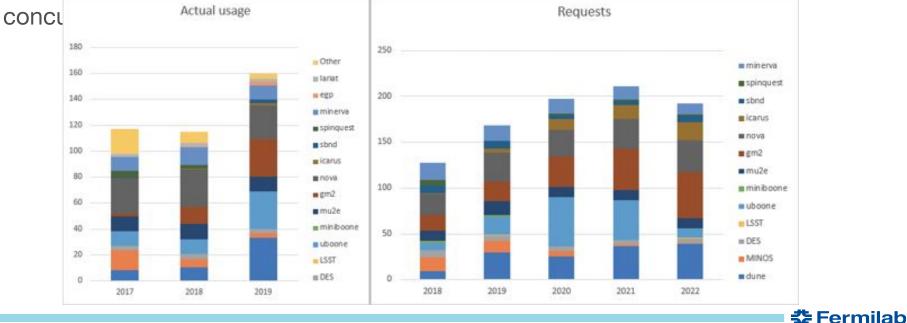
Site distribution of production* jobs, past year


Offsite

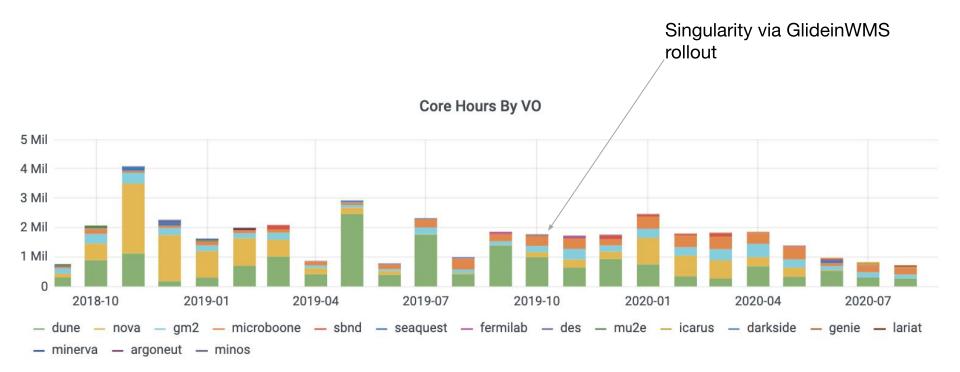


Fermilab

Site distribution of analysis* jobs, past year



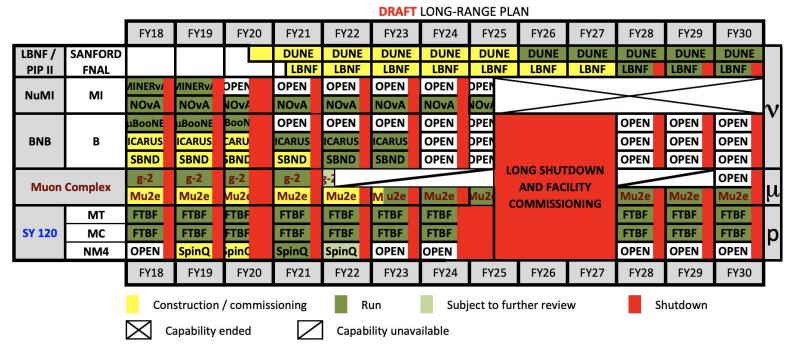
Experiment Requests and resources



FermiGrid has expanded but significant chunks are out of warranty. Can cover about 240M slot-hours, but that's over the year and expt peaks tend to overlap

Also remember slot weight: higher memory jobs reduce the maximum number of

Singularity Invocation Effects



Draft Long-range FNAL plans

Office of the CRO June 2020

🗲 Fermilab

NOTES 1. This draft long-range plan is updated annually, typically following the summer PAC meeting.

2. The FY20 Summer shutdown began early in response to the COVID-19 pandemic. Summer shutdowns will typically last about 4 months during the construction of LBNF/DUNE and PIP-II. The timing and length of the 2-year Long Shutdown associated with the major construction activities at the lab will become clearer as the projects are baselined. Optimized commissioning and physics startup plans will be developed.