~ Scheduling a Kubernetes Federation
with Admiralty

‘.\ '\\ ‘
\.\ / \
.\ £ I l

lgor Stiligoi - UC San Diego
on behalf of the PRP/Nautilus group

// A\ M r il
UCSan Diego. ,SDSC giD

PACIFIC RESEARCH

PRP, Nautilus and Kubernetes PLATFORM

* The Pacific Research Platform (PRP) has been using Kubernetes
since 2016

 Started as a way to conveniently schedule
network test services

* Evolved in being a convenient
platform for ML research

USC UCLA Caltech
2x40G 160TB 100G NVMe 6.4TB 40G 192TB

PRP Disks |
Ii- 40G 160TB 100G NVMe 6.4TB
40G 192TB
S 2 FIONAS8s

° OSG has had d CE gathering CHASE-CI 1 FIONA8 CENIC
opportunistic cycles —— —=

6918 CPU Cores on 187 Hosts 100G NVMe 6.4TB

for over a year now |
. 2.1 PB Storage 4.5 FIONA8s

* As well as orchestrating some I 550 GPUs)/ — H
| 100G 48TB

40G 160TB

100G Gold NVMe

of its services e 1 / —
e.g. StashCache and Frontends (< — 23406 16078
1 FIONAS8* 2 FIONA4s 4:(;:;:2-: ’ 1FIONAS o
17 FIONAS 100G NVMe 6.4TB
s e mrowe—])Y (o4

35 FIONA2s

= \ 43
A% | 4
\|

Why federation? EREEaR

* PRP/Nautilus has been steadily growing
* |t now has nodes also in Asia, Europe and Australia
* While successful, we do understand not everyone will want to join the club

* Separate administration domains
* We even have the use case at UCSD
* PRP Nautilus and SDSC Expanse will operate separately,
but will work together through federation
* Multiple platforms
* PRP has an loT component, where ARM CPUs rule
* Having a dedicated ARM k3s and federating with it ended being simpler

SDSC

SAN DIEGO SUPERCOMPUTER CENTER

= ; 43
A% | |
\|

PACIFIC RESEARCH

Driving principles PLATFORM

* We wanted a “native Kubernetes” solution
* |.e. kubectl should be all that the user needs
* We did not want a centralized solution
* All participating Kubernetes clusters should be on equal playing field
* Each Kubernetes cluster should be able to participate
in any number of federations
* We did not want to do any development ourselves
* Helping with testing OK
* Occasional patch OK
e But no long-term maintenance

Admiralty’s Multicluster-Scheduler

Admiralty Blog Pricing Contact GitHub Chat Twitter € @ Q Search [(K

Introduction

Quick sar Multi-Cluster Scheduling

Source POdS Pod Chaperons

Operator Guide Candidate Pods
Admiralty's multi-cluster scheduling feature must be enabled at the namespace level with the multicluster-

User Guide . Delegate Pods
scheduler=enabled label, and at the pod level with the multicluster.admiralty.io/elect="" .
ummary

Architecture

annotation. Annotated pods in labeled namespaces are called source pods. Typically, cluster administrators
label namespaces, while users annotate pod templates of, e.g., Jobs or Deployments.

Architecture

Multi-cluster scheduling is supported by four components run by pods in Admiralty's installation namespace
(typically, admiralty):

1. a mutating pod admission webhook,
2. the proxy scheduler,
3. the pod chaperon controller, and

4. the candidate scheduler.

For a given source pod, the mutating pod admission webhook and proxy scheduler are acting in the cluster
where the source pod is created, whereas the pod chaperon controller and candidate scheduler are acting in
target clusters of that source cluster.

@ INFo

The proxy and candidate schedulers extend the standard Kubernetes scheduler with Scheduler Framework
plugins. Therefore, they implement all standard Kubernetes scheduling features.

https://admiralty.io ESZ&

Admiralhuic nak camankihla usibh Fhicrd_aacku siiekam erhadilare That haina enid iFunne sickam erhadulae

Admiralty’s Multicluster-Scheduler

® 00 (< El \lo https://github.com/admiraltyio/multicluster-scheduler Gl\ h m] e
O Search or jump to... Pulls Issues Marketplace Explore
H admiraltyio / multicluster-scheduler ® Unwatch v 15 Y7 Star 215 % Fork 19
<> Code (1) Issues 7 Il Pull requests 1 (») Actions '] Projects 2 (1) Security

¥ master ~ Go to file Add file ~ About

A system of Kubernetes

@ adrienjt v0.10.0 changelog and (now scripted) version b... « + 17 daysago {9131 controllers that intelligently
schedules workloads across
.github/workflows fix github actions workflow 2 months ago clusters.
build target controller 2 months ago & admiralty.io
charts/multicluster-s... v0.10.0 changelog and (now scripted) versio... 17 days ago 0 Readme
cmd fix name collisions and truncate names 20 days ago &8 Apache-2.0 License

docs v0.4.0 see CHANGELOG.md 9 months ago

Admiralty on Nautilus

* Currently running 0.10.0-rc1

* Have been federating with
* ARM-based k3s
* PacificWave Kubernetes cluster
* Google Cloud Kubernetes cluster
* Kubernetes Cluster inside Azure

» Getting ready to federate with
* Expanse’s Kubernetes partition
* A Windows-based Kubernetes cluster

PACIFIC RESEARCH

PLATFORM

N

14

| 4d
N 1/
/L

PACIFIC RESEARCH

Installing Admiralty SRR
* Pretty well documented in github: Q—
https://github.com/admiraltyio/multicluster-scheduler/tree/v0.10.0-rc.1 njl‘_lq‘l

1

* Source and target cluster both need Admiralty installed

helm install cert-manager ..
helm install multicluster-scheduler admiralty/multicluster-scheduler ..

* Create secret in target cluster and propagate to source cluster

(targer) kubemcsa export -n klum cl --as c2 >s.yaml
(source) kubectl -n admiralty apply -f s.yaml

* Whitelist target cluster in source cluster (helm update ...)

* You are pretty much good to go!

* Pods in source cluster just need to add an annotation

metadata:

annotations:
multicluster.admiralty.io/elect:

https://github.com/admiraltyio/multicluster-scheduler/tree/v0.10.0-rc.1

Installing Admiralty

* Admiralty creates a set of new resource types

eV

Igors—-MacBook-Pro:~ isfiligoi$ kubectl api-resources |grep admiralty

clustersources csrc multicluster.admiralty.io false ClusterSource
clustersummaries mcsum multicluster.admiralty.io false ClusterSummary
clustertargets ctg multicluster.admiralty.io false ClusterTarget
podchaperons chap multicluster.admiralty.io true PodChaperon
sources src multicluster.admiralty.io true Source
targets _tg multicluster.admiralty.io true Target
* Target clusters can be seen as virtual nodes

Igors-MacBook-Pro:~ isfiligoi$ kubectl get nodes |grep admiralty

admiralty-igor—-gke-us-central Ready cluster 7d18h

admiralty-k3s Ready cluster 7d18h

admiralty-nautilus = Ready cluster 7d18h

R

=1 \
e
A%
\

- 4!

¢ \ | R

/ i

PACIFIC RESEARCH

Installing Admiralty PLATFORM

* We have been mostly using one-way federation =
IIIlTl L

* Nautilus as source, others as targets

* Nautilus can easily be the target, too

* Admiralty allows for arbitrary mesh
* Federation with SDSC Expanse is expected to be both ways

Scheduling to target clusters PEATEORM

=
et

* Admiralty’s Multicluster-Scheduler is a real Kubernetes scheduler
* Users do not get to pick explicitly the target
* Offload happens based on standard requirements and preferences
* Users just have to opt-in

* When there are nodes in multiple possible clusters that match
* Admiralty will consider only clusters that have free matching nodes
* Which target cluster will be picked is (mostly) non-deterministic
* |f no target clusters have any available matching nodes,
the pod remains pending in the source cluster (only)

* Priorities and preemption work as you would expect them to

. WL
Scheduling to target clusters PLATEORM

uses the stan d d rd kube-scheduler selects a node for the pod in a 2-step operation:

Under the hood, Node selection in kube-scheduler —
||II'I L

. . [
k8s filtering and 1. Filtering
SCOTI ng 2. Scoring
mechanisms The filtering step finds the set of Nodes where it's feasible to schedule the Pod. For example, the

PodFitsResources filter checks whether a candidate Node has enough available resource to meet
a Pod's specific resource requests. After this step, the node list contains any suitable Nodes;
often, there will be more than one. If the list is empty, that Pod isn't (yet) schedulable.

In the scoring step, the scheduler ranks the remaining nodes to choose the most suitable Pod
placement. The scheduler assigns a score to each Node that survived filtering, basing this score
on the active scoring rules.

Finally, kube-scheduler assigns the Pod to the Node with the highest ranking. If there is more
than one node with equal scores, kube-scheduler selects one of these at random.

https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/#tkube-scheduler-implementation

Scheduling to target clusters

SOURCE
POD

SOURCE CLUSTER

MUTATING POD
ADMISSION WEBHOOK

\

PROXY
SCHEDULER

PACIFIC RE»SiEARCH

PLATFORM

TARGET CLUSTERS

POD POD CHAPERON POD
CHAPERON CONTROLLER CANDIDATE

CREATE

TATE (AL

DELETE

CREATE——p»

ANNOT

ATE (IS RESERVE

CANDIDATE
SCHEDULER

PDATE STATUS

DATA PLANE
CONTROL PLANE

Other features ST

 Admiralty has several other features we have not explored yet =
* Three potentially interesting options: I||'|'||I

* Multi-cluster services, using a
load-balancing across a Cilium cluster mesh

* |dentity federation (instead of shared secrets)
* Federation with Targets lacking a public IP (reversed connectivity)

R

Conclusion DAGEICREEARCH

e —>
* Admiralty has been in use in the PRP k8s cluster/Nautilus —
for some time now |f -~ Tl
I,

* Works as advertised for our main use cases
* We are planning to use it to expand to more clusters in the future

Acknowledgments PLATFORM

* This work was partially funded by the
US National Science Foundation (NSF)
under grants OAC-1826967, OAC-1541349,
MPS-1148698 and OAC-1841530.

