
Scheduling a Kubernetes Federation
with Admiralty

PRP, Nautilus and Kubernetes

• The Pacific Research Platform (PRP) has been using Kubernetes
since 2016
• Started as a way to conveniently schedule

network test services
• Evolved in being a convenient

platform for ML research

• OSG has had a CE gathering
opportunistic cycles
for over a year now
• As well as orchestrating some

of its services
e.g. StashCache and Frontends

100G NVMe 6.4TB
Caltech

40G 160TB HPWREN
40G 160TB
4 FIONA8s*
Calit2/UCI

35 FIONA2s
17 FIONA8s

2x40G 160TB HPWREN
UCSD

100G Epyc NVMe
100G Gold NVMe

27 FIONA8s + 5 FIONA8s
SDSC @ UCSD

1 FIONA8
40G 160TB

UCR 40G 160TB

USC

100G NVMe 6.4TB
2x40G 160TB

UCLA

1 FIONA8
2x40G 160TB

Stanford U

2 FIONA8s
40G 192TB

UCSB

4.5 FIONA8s
100G NVMe 6.4TB

40G 160TB
UCSC

Connected by PRP’s Use of CENIC 100G Network and Its National and
International Partner networks: PRP’s Nautilus Hypercluster

10 FIONA2s
2 FIONA8

40G 160TB
UCM

32-Location Nautilus Cluster:
6918 CPU Cores on 187 Hosts

2.1 PB Storage
550 GPUs

40G 160TB HPWREN
100G NVMe 6.4TB

1 FIONA8* 2 FIONA4s
FPGAs + 2PB BeeGFS

SDSU

PRP Disks

10G 3TB
CSUSB

Minority Serving
Institution

CHASE-CI

100G 48TB
NPS

40G 192TB

USD

Why federation?

• PRP/Nautilus has been steadily growing
• It now has nodes also in Asia, Europe and Australia
• While successful, we do understand not everyone will want to join the club

• Separate administration domains
• We even have the use case at UCSD
• PRP Nautilus and SDSC Expanse will operate separately,

but will work together through federation

• Multiple platforms
• PRP has an IoT component, where ARM CPUs rule
• Having a dedicated ARM k3s and federating with it ended being simpler

Driving principles

• We wanted a “native Kubernetes” solution
• I.e. kubectl should be all that the user needs

• We did not want a centralized solution
• All participating Kubernetes clusters should be on equal playing field
• Each Kubernetes cluster should be able to participate

in any number of federations

• We did not want to do any development ourselves
• Helping with testing OK
• Occasional patch OK
• But no long-term maintenance

Admiralty’s Multicluster-Scheduler

https://admiralty.io

Admiralty’s Multicluster-Scheduler

Admiralty on Nautilus

• Currently running 0.10.0-rc1
• Have been federating with
• ARM-based k3s
• PacificWave Kubernetes cluster
• Google Cloud Kubernetes cluster
• Kubernetes Cluster inside Azure

• Getting ready to federate with
• Expanse’s Kubernetes partition
• A Windows-based Kubernetes cluster

Installing Admiralty

• Pretty well documented in github:
https://github.com/admiraltyio/multicluster-scheduler/tree/v0.10.0-rc.1

• Source and target cluster both need Admiralty installed
helm install cert-manager …
helm install multicluster-scheduler admiralty/multicluster-scheduler …

• Create secret in target cluster and propagate to source cluster
(targer) kubemcsa export -n klum c1 --as c2 >s.yaml
(source) kubectl -n admiralty apply -f s.yaml

• Whitelist target cluster in source cluster (helm update …)
• You are pretty much good to go!
• Pods in source cluster just need to add an annotation
metadata:
annotations:
multicluster.admiralty.io/elect: ""

https://github.com/admiraltyio/multicluster-scheduler/tree/v0.10.0-rc.1

Installing Admiralty

• Admiralty creates a set of new resource types

• Target clusters can be seen as virtual nodes

Installing Admiralty

• We have been mostly using one-way federation
• Nautilus as source, others as targets

• Nautilus can easily be the target, too
• Admiralty allows for arbitrary mesh
• Federation with SDSC Expanse is expected to be both ways

Scheduling to target clusters

• Admiralty’s Multicluster-Scheduler is a real Kubernetes scheduler
• Users do not get to pick explicitly the target
• Offload happens based on standard requirements and preferences
• Users just have to opt-in

• When there are nodes in multiple possible clusters that match
• Admiralty will consider only clusters that have free matching nodes
• Which target cluster will be picked is (mostly) non-deterministic
• If no target clusters have any available matching nodes,

the pod remains pending in the source cluster (only)

• Priorities and preemption work as you would expect them to

Scheduling to target clusters

Under the hood,
uses the standard
k8s filtering and
scoring
mechanisms

https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/#kube-scheduler-implementation

Scheduling to target clusters

Other features

• Admiralty has several other features we have not explored yet
• Three potentially interesting options:
• Multi-cluster services, using a

load-balancing across a Cilium cluster mesh
• Identity federation (instead of shared secrets)
• Federation with Targets lacking a public IP (reversed connectivity)

Conclusion

• Admiralty has been in use in the PRP k8s cluster/Nautilus
for some time now
• Works as advertised for our main use cases
• We are planning to use it to expand to more clusters in the future

Acknowledgments

• This work was partially funded by the
US National Science Foundation (NSF)
under grants OAC-1826967, OAC-1541349,
MPS-1148698 and OAC-1841530.

