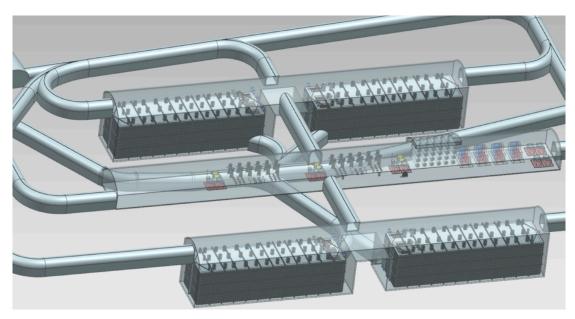

Nucleon Decay Searches in DUNE

Viktor Pěč, The University of Sheffield for the DUNE collaboration BLV 2019, Madrid October 22nd, 2019

Deep Underground Neutrino Experiment (DUNE)



- Location
 - 1.5 km underground @ SURF, Lead, South Dakota,
 - 1300 km from the neutrino source
- Neutrino source
 - powerful new beam of neutrinos @ Fermilab, Chicago, Illinois
- Planned to start with 1st module in 2026, remaining 3 modules will be added sequentially

Experimental Halls at SURF

- 4 modules, 17.5 kt/10 kt fiducial LAr each
- Modules
 - cryostats 18.9 m (W)×17.8 m (H)×65.8 m (L)
 - instrumented with TPC (currently 2 technologies designed, single phase and dual phase LArTPC)

DUNE Physics Programme

Primary

- Neutrino oscillation (CP violation and mass hierarchy, mixing parameters)
- Proton decay \leftarrow this talk
- Supernova neutrinos

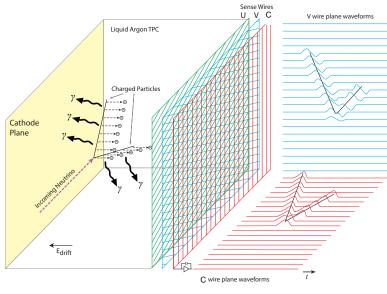
Ancillary

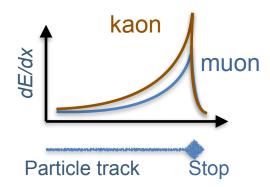
- BSM physics
- Atmospheric neutrinos
- $n\bar{n}$ oscillations \leftarrow this talk
- dark matter

5

Liquid Argon Time Projection Chamber — LArTPC

Principle of operation


- ionisation charge drifts in electric field towards readout plane
- 3D reconstruction:
 - measured drift time (X)
 - location on readout planes (YZ)
- signal proportional to deposited energy → *dE/dx* measurement particle ID


Anode planes — readout

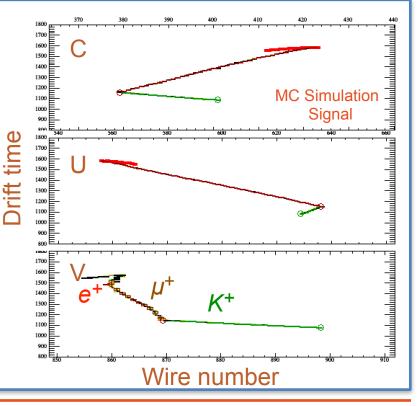
- induction plane wires electrons pass through
- collection plane wires last plane, all ionisation electrons collected
- each plane constitute a 2D view: drift time-wire

DUNE - 3 readout planes

- collection plane (C) wires vertical
- induction plane (U,V) wires 37.5° from vertical
- wire pitch 5 mm

Advantage of LArTPC

- Can reconstruct tracks
- Sees *dE/dx* profile


- Can identify K in nucleon-to-K decays
- Can classify different event topologies

- Example of crisp proton-decay event display
- in 3 wire views

$$p \to K^+ + \bar{\nu}$$

$$K^+ \to \mu^+ + \nu_{\mu}$$

$$\mu^+ \to e^+ + \bar{\nu}_{\mu} + \nu_e$$

Nucleon Decays

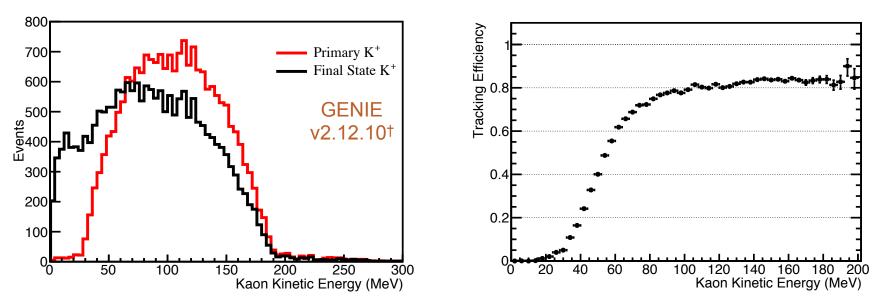
• Potential of DUNE for some nucleon decays investigated:

$$p \to K^+ \bar{\nu}, n \to e^- K^+, p \to e^+ \pi^0$$

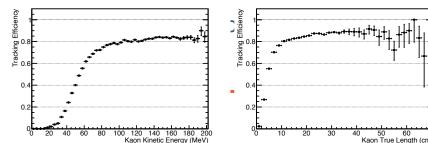
- · More nucleon decay modes will be studied in the future
- Backgrounds:
 - atmospheric neutrino CC and NC interactions
 - cosmogenic found sub-dominant

$$p \to K^+ \bar{\nu}$$

Key features

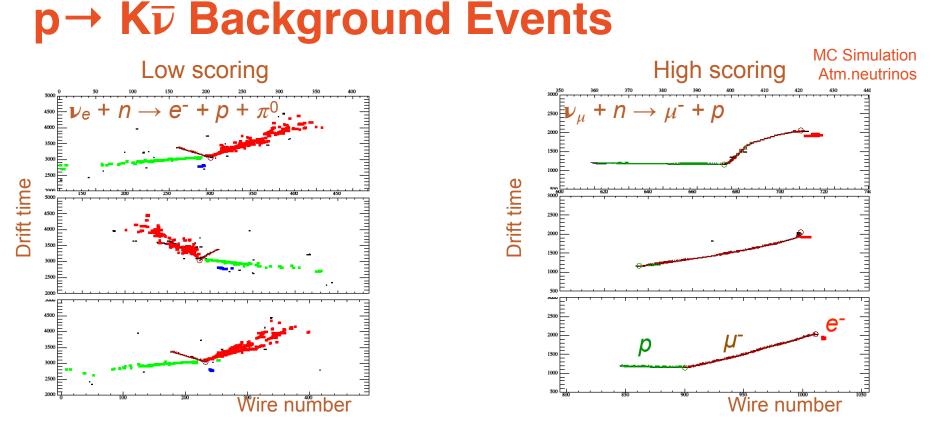

- identifiable K track
 - dE/dx near the end of the track \rightarrow ID and direction
- golden channel: $K^+ \rightarrow \mu^+ \nu$ (64%) mono-energetic muon track
- next best: $K^+ \rightarrow \pi^+ \pi^0$ (21%) mono-energetic π^+ track + 2 π^0 gamma showers

Difficulty


- proton decays in Ar \rightarrow some K will undergo Final State Interactions (FSI) inside the nucleus
- ightarrow K loses energy and it is more difficult to reconstruct its track

Effect of FSI on K Track

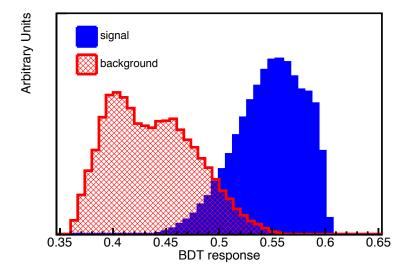
- Left: kinetic energies of kaons leaving Ar nucleus without and with FSI
- Right: current tracking efficiency of kaons: reconstruction switches on only at about 40 MeV
- Visual scanning of events improvement in kaon tracking efficiency possible
 - current 58% → 80% achievable



investigated

[†] GENIE v2.12.10: Nuclear model: relativistic Fermi gas with Bodek-Ritchie tail; FSI: hA2015

- Example of potential background events atmospheric neutrino CC interaction
- Boosted Decision Tree multi-variate analysis used to classify events:
 - Left: well discriminated by the classifier (low score)
 - Right: poorly discriminated (high score)



Sensitivity to $p \rightarrow K\overline{\nu}$

- With current reconstruction:
 - signal efficiency 15% with background suppression of 3x10⁻⁶ (~0.4 bg event per 400 kt-year / 10 years of data taking)
- With improved reconstruction:
 - signal efficiency 30%

Systematics:

- 50% variation in FSI contribution → 2% uncertainty on signal efficiency
- atmospheric neutrino flux and crosssection uncertainties → 20% uncertainty in backgrounds

Sensitivity:

- limit of 1.3×1034 years (90%CL)
 - if no signal observed in 10 years, in full 40 kt configuration
 - 30% efficiency assumed

Other Nucleon Decay Modes Investigated

$n \to e^- K^+$

- Similar analysis to $p \rightarrow K\overline{\nu}$ decay
- Additional electron shower
- Limit **1.1×10³⁴ years** (90%CL) in 400 kt-year exposure with signal efficiency expected 47% and with 6 background events (after optimised reconstruction)
- \rightarrow >2 orders of magnitude improvement of the current limit

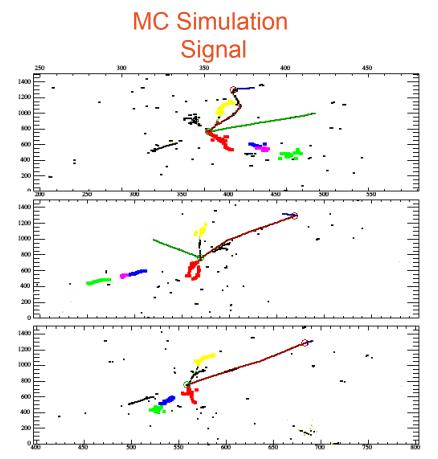
$$p \to e^+ \pi^0$$

- Signature: 3 EM showers
- Preliminary analysis based on MC truth
- Reconstruction only approximated
- 8.7×10³³ years to 1.1×10³⁴ for exposure of 400 kt-year (90%CL)
 - dependent on approximated detector effects (energy smearing)
- Doubling the exposure would allow reaching current SK limit

nn Oscillation

- Were $n\bar{n}$ oscillations possible, neutrons would transform into antineutron and quickly annihilate with surrounding nucleons
- Oscillation time heavily suppressed for neutrons bound in nucleus
- Effective conversion time $T_{n-\bar{n}}$ relates to free neutron oscillation time $\tau_{n-\bar{n}}$:

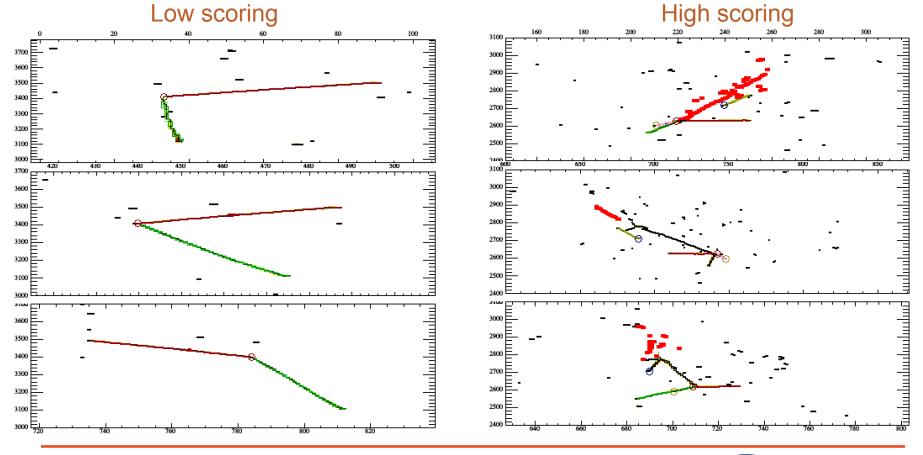
$$\tau_{n-\bar{n}}^2 = \frac{T_{n-\bar{n}}}{R}$$


- Used suppression factor calculated for iron [1] $R = 6.66 \times 10^{22} s^{-1}$
- A new calculation exists for suppression factor in argon [2], see details in Josh Barrow's poster: $R = 5.6 \times 10^{22}$

[1] Phys. Rev. D78 (2008) 016002 [2] arXiv:1906.02833

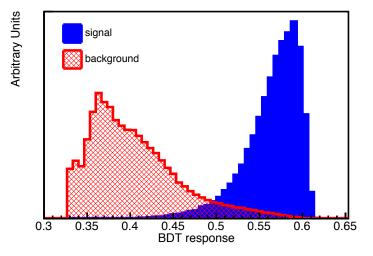
nn Oscillation Signal

- Annihilation produces multiple pions
- FSI can yield nucleons
- Typical **star-like** signal
- Invariant mass ~2 GeV
- Vanishing total momentum



nn Backgrounds

Atmospheric neutrino NC interactions


MC Simulation Atm.neutrinos

nn Oscillation Time Limits

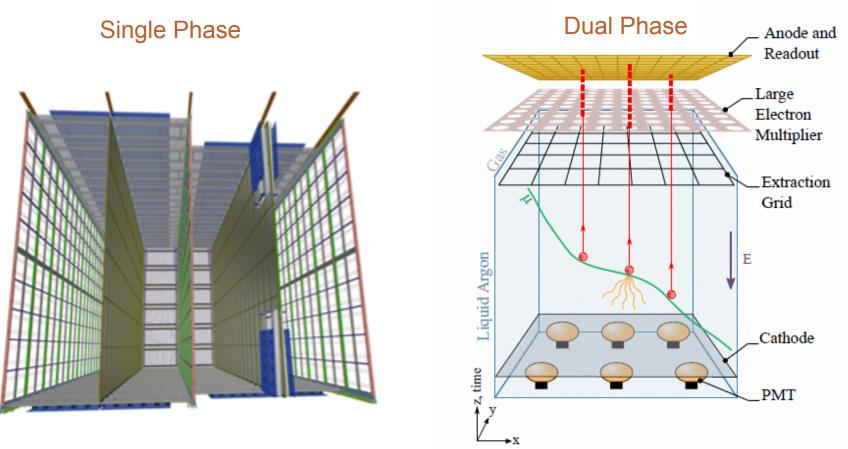
- Analysis uses similar multi-variate methods to nucleon decay searches
- Bound neutron:
 - 8% signal efficiency and expected background of 23 events (current reconstruction)
 - → 6.45×10³² years (90%CL) limit with 400 kt-year exposure (~10 years in full configuration)
- Free neutron oscillation time limit (using suppression factor for iron):
 - 5.53×10⁸ s
- 2× improvement over the current limits

Summary

- LArTPC new technology for nucleon decay searches
- DUNE will be the largest LArTPC with sensitivities complementary to large water Cherenkov detectors
- Three nucleon decay modes were investigated so far and complementary and improved lifetime limits are achievable
- nn

 – factor 2 improvement on free neutron oscillation time expected
- Observation of 1 event in some decay modes can constitute compelling evidence

Comparison of Current Limits and Sensitivity of DUNE


	DUNE estimated sensitivity [years] @ 90% CL, after 400 kt- year exposure	Current limit, all 90% CL	Notes
$ ho ightarrow K^+ \overline{ u}$		5.9×10 ^{33 [1]} 8.2×10 ^{33 [2]}	[1] SK, PysRev D90, 072005 (2014); 260 kt-year [2] SK, TAUP2019, preliminary; 365 kt-year
$n \rightarrow e^-K^+$	1.1×10 ³⁴	3.2×10 ^{31 [3]}	[3] FREJUS, PhysLett B269, 227 (1991); 2 kt-year
$ ho ightarrow e$ + π^{o}	8.7×10 ³³ –1.1×10 ³⁴	1.6×10 ^{34 [4]} 2.0×10 ^{34 [5]}	[4] SK, PhysRev D95, 012004 (2017); 306 kt-year [5] SK, TAUP2019, preliminary; 365 kt-year
<i>nnnoscillation</i> [s] note: used nuclear suppression factor for Fe		8.6×10 ^{7 [6]} 2.7×10 ^{8 [7]}	[6] free <i>nn</i> @ ILL, ZPhys C63, 409 (1994) [7] SK, PhysRev D91, 072006 (2015); 200 kt-year

- All limits are on lifetime/branching ratio
- 400 kt-year exposure is equivalent to 10 year running in full 4-module configuration

Single vs Dual Phase LArTPC

• Horisontal drift, all in LAr

• Vertical drift, charge multiplied in gaseous Ar above LAr

