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Deep Underground Neutrino Experiment (DUNE)

Sanford Underground
Research Facility

Fermilab
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Location
- 1.5 km underground @ SURF, Lead, South Dakota,
- 1300 km from the neutrino source

Neutrino source
- powerful new beam of neutrinos @ Fermilab, Chicago, lllinois

Planned to start with 1st module in 2026, remaining 3 modules will be added
sequentially
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Experimental Halls at SURF
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4 modules, 17.5 kt/10 kt fiducial LAr each
 Modules
- cryostats 18.9 m (W)x17.8 m (H)x65.8 m (L)

- instrumented with TPC (currently 2 technologies designed,
single phase and dual phase LArTPC)




DUNE Physics Programme

Primary

* Neutrino oscillation (CP violation and mass hierarchy, mixing

parameters)
« Proton decay « this talk

« Supernova neutrinos

Ancillary
« BSM physics

Atmospheric neutrinos

nn oscillations <« this talk

dark matter




Liquid Argon Time Projection Chamber — LArTPC

Principle of operation

- ionisation charge drifts in electric field towards readout
plane

- 3D reconstruction:
- measured drift time (X)
- location on readout planes (YZ)

- signal proportional to deposited energy — dE/dx
measurement — particle ID

Anode planes — readout
- induction plane wires — electrons pass through

- collection plane wires — last plane, all ionisation
electrons collected

- each plane constitute a 2D view: drift time—wire

DUNE — 3 readout planes

- collection plane (C) wires vertical
- induction plane (U,V) wires 37.5° from vertical

- wire pitch 5 mm
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Advantage of LArTPC

e (Can reconstruct tracks

« Sees dE/dx profile

-

« Can identify Kin nucleon-to-K decays

« Can classify different event topologies

Example of crisp proton-decay
event display

in 3 wire views
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Nucleon Decays

* Potential of DUNE for some nucleon decays investigated:
. p—>Kin—oe K p—etn®

* More nucleon decay modes will be studied in the future

» Backgrounds:
- atmospheric neutrino CC and NC interactions

- cosmogenic found sub-dominant

p— KD
Key features
- identifiable K track
- dE/x near the end of the track — ID and direction
- golden channel: KT — ,u+z/ (64%) — mono-energetic muon track
. next best: K+ — ztz! (21%) mono-energetic 7 track + 2 7° gamma showers
Difficulty
- proton decays in Ar = some K will undergo Final State Interactions (FSI) inside the nucleus
= K loses energy and it is more difficult to reconstruct its track




Effect of FSI on K Track
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Left: kinetic energies of kaons leaving Ar nucleus without and with FSI

Right: current tracking efficiency of kaons: reconstruction switches on only at about 40

MeV

Visual scanning of events improvement in kaon tracking efficiency possible

- current 58% — 80% achievable

Improvements in reconstructions are being investigated

T GENIE v2.12.10: Nuclear model: relativistic
Fermi gas with Bodek-Ritchie tail; FSI: hA2015
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p— Kv Background Events

MC Simulation
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* Example of potential background events — atmospheric neutrino CC interaction
» Boosted Decision Tree multi-variate analysis used to classify events:
Left: well discriminated by the classifier (low score)

- Right: poorly discriminated (high score)
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Sensitivity to p— Kv

* With current reconstruction:

- signal efficiency 15% with
background suppression of 3x10-6
(~0.4 bg event per 400 kt-year /
10 years of data taking)

« With improved reconstruction:
- signal efficiency 30%

Systematics:

* 50% variation in FSI contribution—
2% uncertainty on signal efficiency

« atmospheric neutrino flux and cross-
section uncertainties = 20%
uncertainty in backgrounds

Arbitrary Units

0.5 0.55 0.6

BDT response

0.4 0.45

Sensitivity:
* limit of 1.3x1034 years (90%CL)

- if no signal observed in 10 years,
in full 40 kt configuration

- 30% efficiency assumed
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Other Nucleon Decay Modes Investigated
n—e K"
« Similar analysis to p— Kv decay

Additional electron shower

Limit 1.1x1034 years (909%CL) in 400 kt-year exposure with signal efficiency
expected 47% and with 6 background events (after optimised reconstruction)

— >2 orders of magnitude improvement of the current limit

p— etnd

Signature: 3 EM showers

Preliminary analysis based on MC truth

Reconstruction only approximated
8.7x1033 years to 1.1x1034 for exposure of 400 kt-year (90%CL)
« dependent on approximated detector effects (energy smearing)

Doubling the exposure would allow reaching current SK limit
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nn Oscillation

Were nn oscillations possible, neutrons would transform into
antineutron and quickly annihilate with surrounding nucleons

Oscillation time heavily suppressed for neutrons bound in nucleus

Effective conversion time 7', _ relates to free neutron oscillation

time 7, _-:

2 Tn—ﬁ

T

n—nm R

Used suppression factor calculated for iron [1] R = 6.66 X 10%%s~!

A new calculation exists for suppression factor in argon [2], see
details in Josh Barrow’s poster: R = 5.6 X 10?2

[1] Phys. Rev. D78 (2008) 016002
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[2] arXiv:1906.02833
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nn Oscillation Signal

MC Simulation
Slgnal

* Annihilation produces multiple . E
pions " % E
- o S, 3
» FSI can yield nucleons mE- e
* Typical star-like signal 3: :
 Invariant mass ~2 GeV "3 E
« Vanishing total momentum s :

" w sho s st = %i.vdcr T
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nn Backgrounds

MC Simulation

« Atmospheric neutrino NC interactions .
Atm.neutrinos

0
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nn Oscillation Time Limits

* Analysis uses similar multi-variate
methods to nucleon decay searches

« Bound neutron:

- 8% signal efficiency and expected
background of 23 events (current
reconstruction)

= 6.45%1032 years (90%CL) limit with
400 kt-year exposure (~10 years in
full configuration)

* Free neutron oscillation time limit
(using suppression factor for iron):

- 5.53x108 s

* 2x improvement over the current limits

Arbitrary Units

.45 0.5 0.55 0.6
BDT response
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Summary

« LArTPC new technology for nucleon decay searches

* DUNE will be the largest LArTPC with sensitivities
complementary to large water Cherenkov detectors

« Three nucleon decay modes were investigated so far and
complementary and improved lifetime limits are achievable

* nn — factor 2 improvement on free neutron oscillation time
expected

« Observation of 1 event in some decay modes can constitute
compelling evidence
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Comparison of Current Limits and Sensitivity of DUNE

DUNE estimated -
sensitivity [years] Current limit,

@ 90% CL, after 400 kt- all 90% CL Notes
year exposure
p — K*D 1.3x1034 5.9x1033[11  [1] SK, PysRev D90, 072005 (2014); 260 kt-year

8.2x1033[21 [2] SK, TAUP2019, preliminary; 365 kt-year

n — e Kt 1.1%x1034 3.2x1031[3] [3] FREJUS, PhysLett B269, 227 (1991); 2 kt-year

p — e+rf 8.7%1033 —1.1%x1034 1.6x1034[4] [4] SK, PhysRev D95, 012004 (2017); 306 kt-year
2.0x1034151 [5] SK, TAUP2019, preliminary; 365 kt-year

nn oscillation [s] 5.53x108 8.6x10716]  [6] free nim @ ILL, ZPhys C63, 409 (1994)

note: used nuclear 2.7x10817] [7] SK, PhysRev D91, 072006 (2015); 200 kt-year

suppression factor

for Fe

« All limits are on lifetime/branching ratio

* 400 kt-year exposure is equivalent to 10 year running in full 4-module
configuration
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Single vs Dual Phase LArTPC

Dual Phase /_Anodeand

Single Phase
Readout
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 Vertical drift, charge multiplied

* Horisontal drift, all in LAr
in gaseous Ar above LAr
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