Single Phase Far Detector

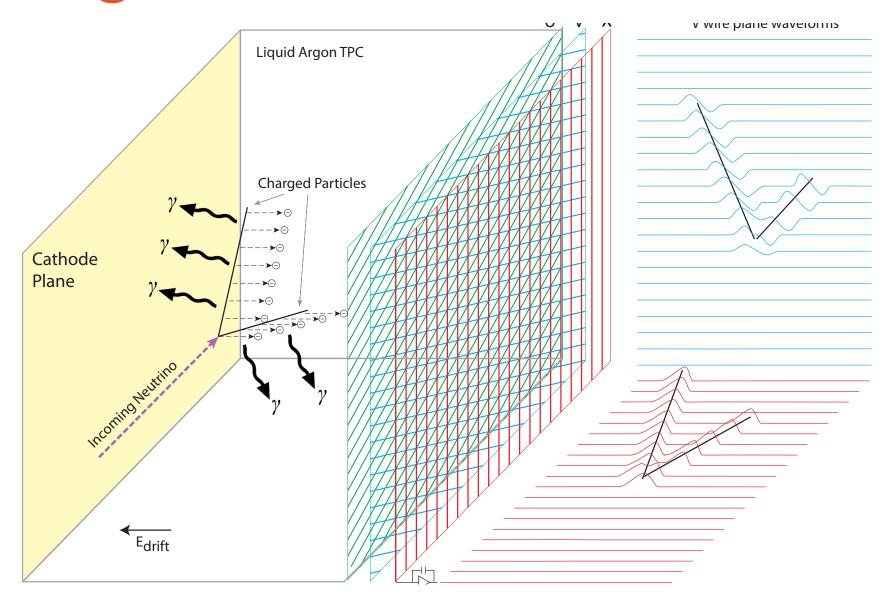
Gina Rameika
LBNF/DUNE DOE IPR
30 October – 1 November 2019

Who am I?

- Scientist at Fermilab since 1982
- Worked on :
 - Fixed Target : Hyperons, Neutrinos (DONUT)
 - Deputy Head of Research Division
 - NuMI/MINOS Project management
 - Soudan Laboratory Operations Manager for Fermilab
 - LBNE Project Scientist
 - MicroBooNE Project Manager (2011 2014)
 - Neutrino Division Head (2014 2016)
 - ProtoDUNE-SP Construction Coordinator (2016 2018)
 - DUNE Resource Coordinator (2019)

Content - I

- Single Phase Liquid Argon Time Projection Chamber
 - Basic Concept
 - Components
- The DUNE 10 kT fiducial volume module
 - High Voltage: Cathode Planes and Field Cages
 - Anode Plane Assemblies
 - TPC Electronics (cold and warm)
 - Photon Detectors
 - Data Acquisition
 - Instrumentation and Calibration


Content - II

- Learnings from ProtoDUNE I
 - Purity/electron lifetime
 - High Voltage behaviour
- On-going and Up-coming Studies
 - In ProtoDUNE I
 - Prototyping at Ash River
 - APA7 @ CERN
- ProtoDUNE II

I will go through Content-I quickly so that we have time for these topics

10/14/19

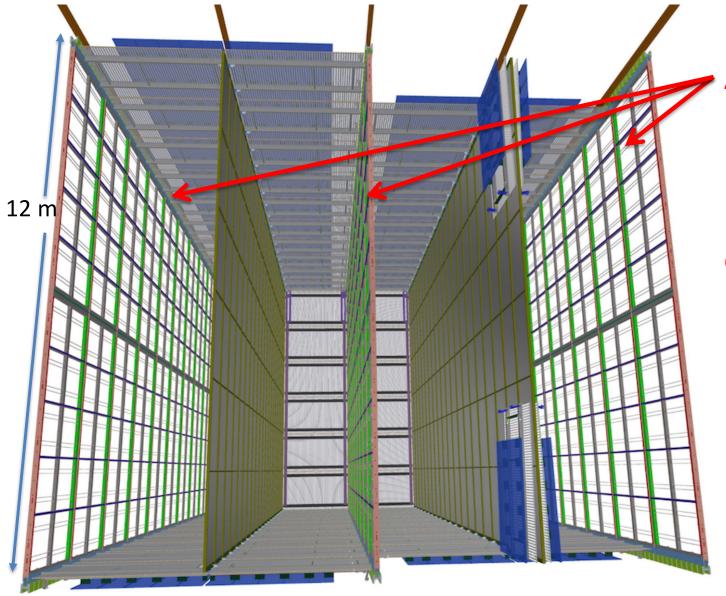
Single Phase LAr TPC

Components

- Drift ionization charge : High Voltage
 - HV power supply and feed-through
 - Cathode Plane
 - Field Cages
 - Resistive dividers
- Collect ionization charge: Sense wires, electronics
 - Anode Planes
 - Front-end amplification, digitization, readout
- Collect scintillation light: wavelength shifters, light guides, light collection electronics
 - Photon detector modules with SiPM readout
- Data Acquisition
- Instrumentation and Calibration systems

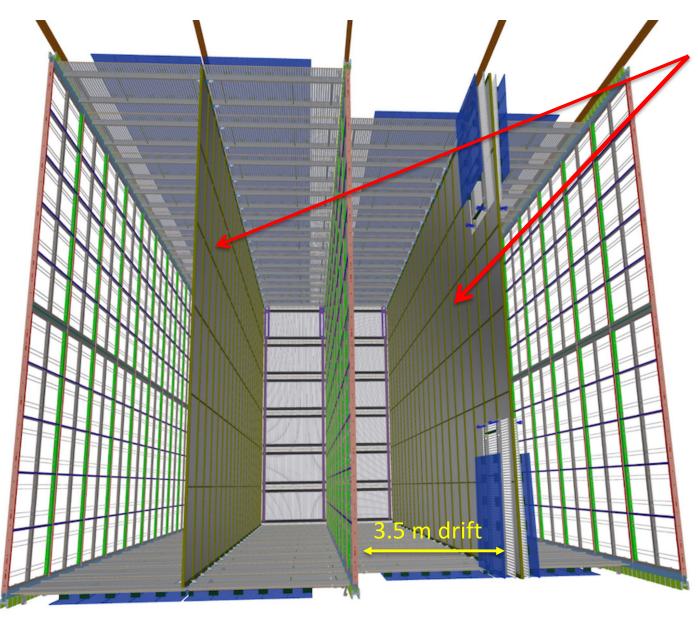
Other factors that matter

- Ionization
 - Electron lifetime argon purity
 - Diffusion
 - Recombination
- Scintillation light
 - Nitrogen content in the argon


DUNE Single Phase Far Detectors at SURF

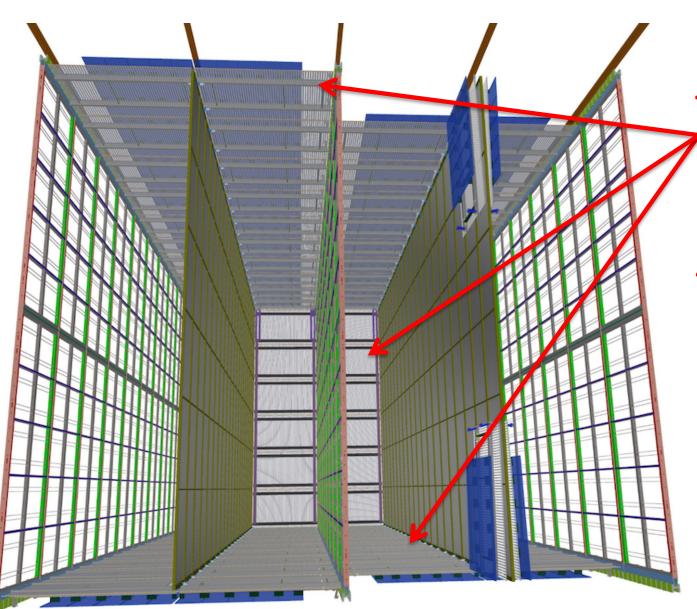
Introduction

- Construction of the DUNE detectors is the responsibility of the international DUNE collaboration through the organization of the Consortia
- The Single Phase Far Detector is at a very high level of design maturity as demonstrated in the successful operation of the ProtoDUNE SP-I
- Many lessons learned from ProtoDUNE have been incorporated into DUNE final designs
- ProtoDUNE-SP-II will provide the opportunity to construct, install and operate DUNE Module 0 components
- Full scale prototyping of components and tooling for installation are ongoing at Ash River
- We have a working model that assigns almost all major components for two SP far detector modules to either DOE, NSF or international partners; presented to the international Resources Review Board in September
- Opportunity for further partner contributions exist, in particular, in the areas of instrumentation and calibration


The DUNE Single Phase Module

Anode Planes

150 APAs arranged in three planes, double high APAs in 25 rows


The DUNE Single Phase Module

High Voltage Cathode Planes

2 cathode planes each composed of 150 1.2m w x 4m h CPA modules

The DUNE Single Phase Module

Field Cages:

Top, Bottom and Endwalls

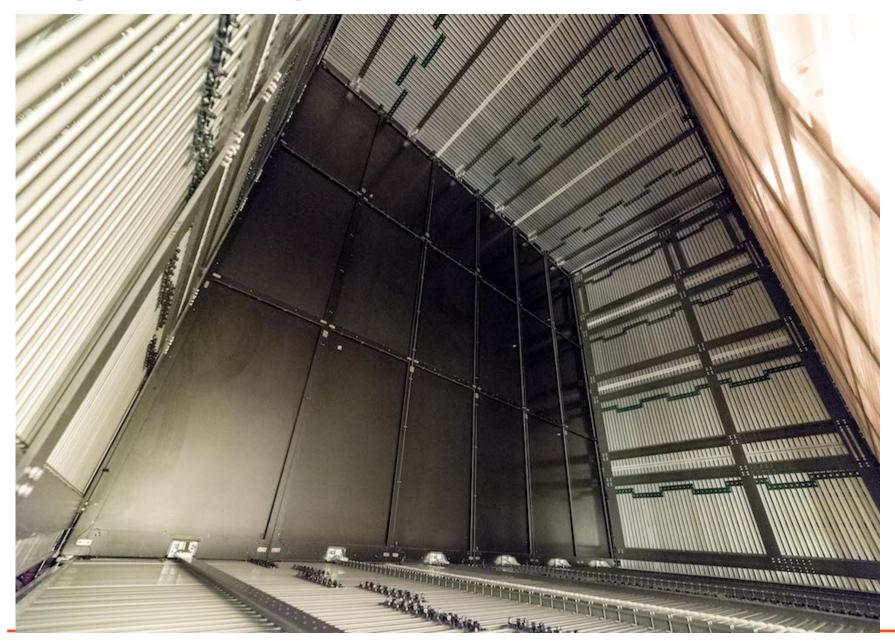

100 T and B modules 48 Endwall modules

High Voltage System Components

Feed-through

Resistor Dividers

US-DOE, CERN, INFN


CPA Panel (from PD)
DUNE will be
2X longer

Top/bottom Field
Cage module
with Ground plane

High voltage drift volume in PD

Anode Plane Assemblies

UK - 150 US-NSF - 150

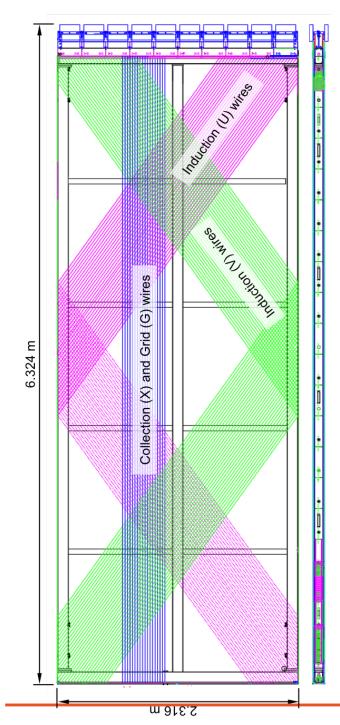
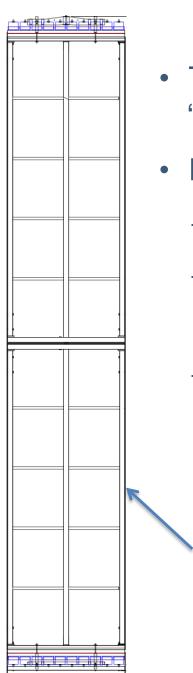
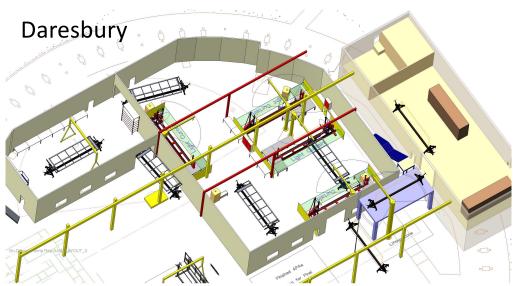



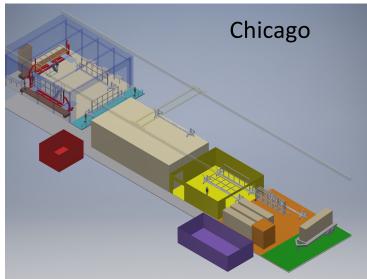
Table 1.3: APA design parameters

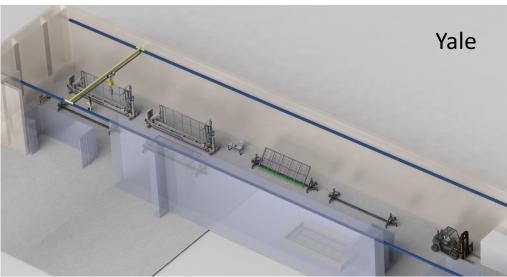
Parameter	Value
Active height	5.984 m
Active width	2.300 m
Wire pitch (U, V)	4.669 mm
Wire pitch (X,G)	4.790 mm
Wire pitch tolerance	$\pm 0.5\mathrm{mm}$
Wire plane spacing	4.75 mm
Wire plane spacing tolerance	$\pm 0.5\mathrm{mm}$
Wire Angle (w.r.t. vertical) (U, V)	±35.7°
Wire Angle (w.r.t. vertical) (X, G)	0°
Number of wires / APA	960 (X), 960 (G), 800 (U), 800 (V)
Number of electronic channels / APA	2560
Wire material	beryllium copper
Wire diameter	150 μ m

Anode Plane	Bias Voltage	Dri
${\cal G}$ - ${\sf Grid}$	-665 V	
U - Induction	−370 V	
V - Induction	0 V	
X - Collection	820 V	
Grounding Mesh	0 V	

Table 1.2: Baseline bias voltages for APA wire layers.

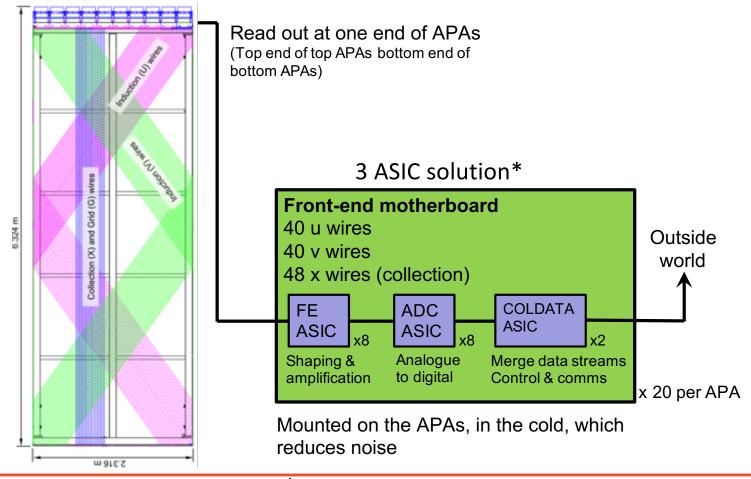


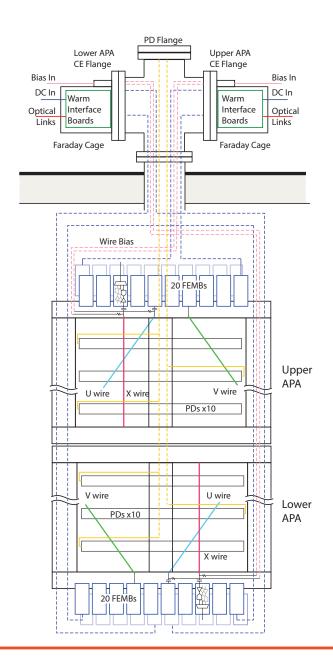

Two APA's are stacked vertically, joined at the "feet"

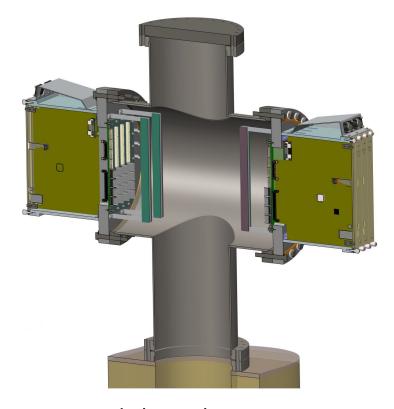

- Production
 - 150 produced in UK, 150 in US
 - UK Factory at Daresbury Lab
 - 4 winding machines
 - US Production Sites: Chicago, Yale and PSL(Wisc)
 - 2 winding machines each at Chicago, Yale, PSL

This one hangs upside down

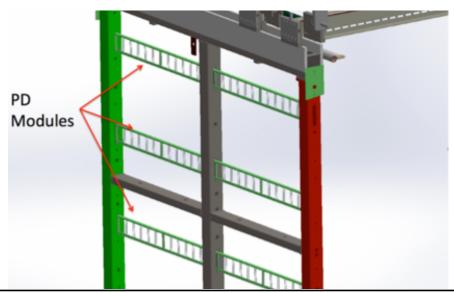
APA Factory layouts




TPC Electronics


100% DOE Scope

- 2560 electronics channels (wires) per APA
- 128 channels per FE ASIC -> 20 COLD mother boards per APA
- 3000 mother boards per Single Phase module


Cold cables to warm electronics

1 Feed-through per APA pair5 WIBs per APA

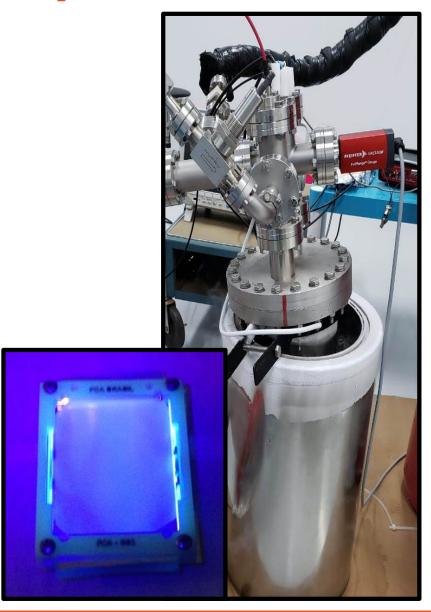
Photon Detector System

ARAPUCA Modules: Brazil

SiPMs & Summing: Italy, Spain

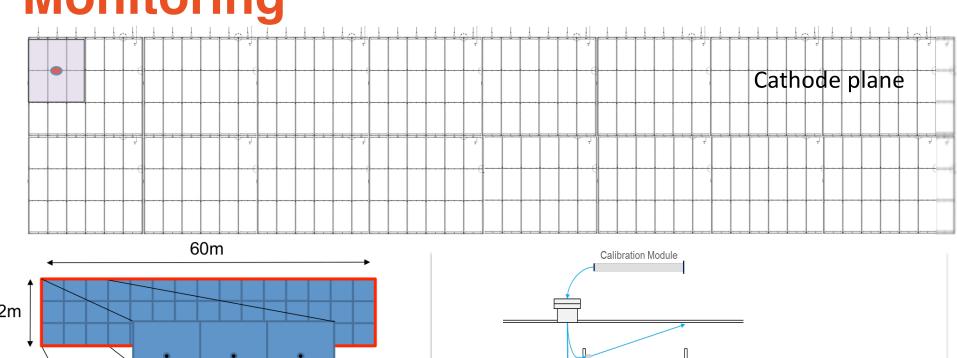
Readout: Peru, Columbia

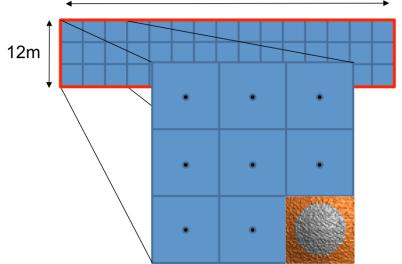
Calibration: US DOE

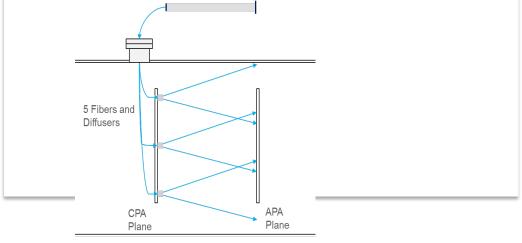

Component	Description	Quantity
Light collector	X-ARAPUCA	10 modules per APA; 1500 total (1000 single-sided; 500 double-sided)
Photosensor	Hamamatsu MPPC 6 mm $ imes$ 6 mm *	192 SiPM per module; 288,000 total
SiPM signal summing	6 passive \times 8 active	4 circuits per module; 6000 total
Readout electronics	Based on commercial ultrasound chip	4 channels/module; 6000 total
Calibration and monitoring	Pulsed UV via cathode-mounted dif- fusers	45 diffusers/CPA side; 180 total

^{*} FBK/Italy also being studied; both to be evaluated in PD-SP II

X-ARAPUCA developments


- X-ARAPUCA Double-sided dichroic filters on both sides) tested
- The detection efficiency results to be comparable with the Singlesided version (around 3%, which exceeds the 2.5% requirement)
- New tests were performed with Single-sided and confirmed previous measurements
- First batch of dichroic filters produced in Brazil delivered at UNICAMP. Evaporation of wavelength shifter being studied.
- X-ARAPUCAs prototypes are being assembled at UNICAMP. Will be used at CERN for the Xenon doping test. Other prototypes sent to Milan, South Dakota and Spain for testing.





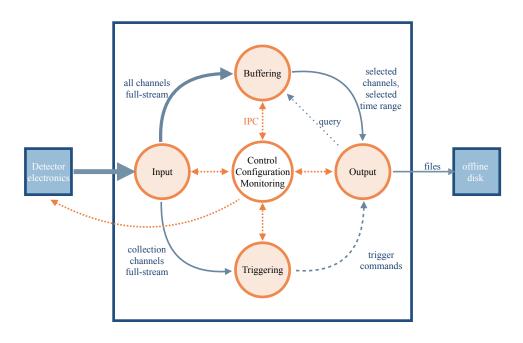
Photon Detector

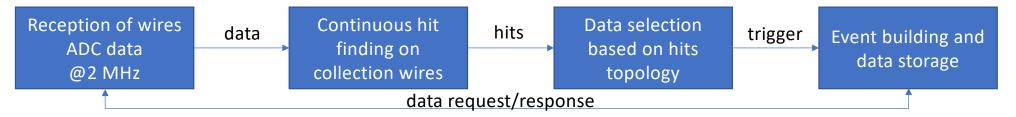
Monitoring

Data Acquisition

UK CERN

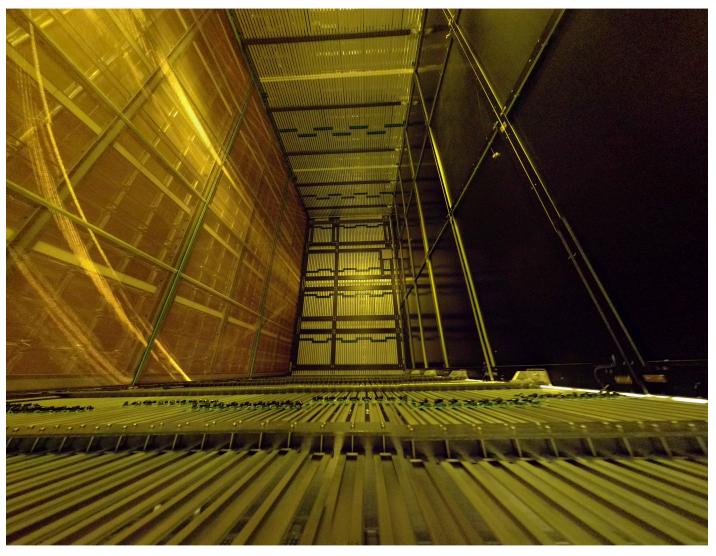
Data Selection scope
(trigger) in NSF proposal




Figure 1.3: Conceptual Overview of DAQ System Functionality for a single 10 kt module

Each set of APA WIBs connects to one FELIX FPGA PCIe 3.0 board

- System requirements driven by need for
 - High uptime
 - Configurable and controllable from remote locations
 - Operational during installation and commissioning via separate partitions
 - Large buffering capability and low fake triggers for Supernova
 - Reduce data volume prior top off-line storage
- Five sub-systems
 - Upstream DAQ
 - Data selection
 - Back-end subsystem
 - Control, Configuration and Monitoring
 - Timing and synchronization



Data driven triggering

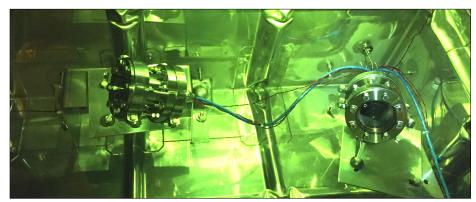
- DAQ receives a continuous stream of TPC data
- In ProtoDUNE external signals (cosmic rays tagger, beam instrumentation, random) determine when data shall be collected
- In DUNE the content of the TPC data (and PD data) will be used to trigger the event building and data storage
- In 2019 NP04 was used to demonstrate the capability of data driven triggering for DUNE
- In PD-II we plan to exercise data driven triggering from the Photon System

The Single Phase TPC

APA's + electronics, along with Photon Detectors, the High Voltage and Data Acquisition Systems comprise the essential elements of the Single Phase Detector.

Instrumentation and Calibration

- Instrumentation includes :
 - Temperature probes
 - Level meters
 - Gas analyzers
 - Purity Monitors
 - Cameras

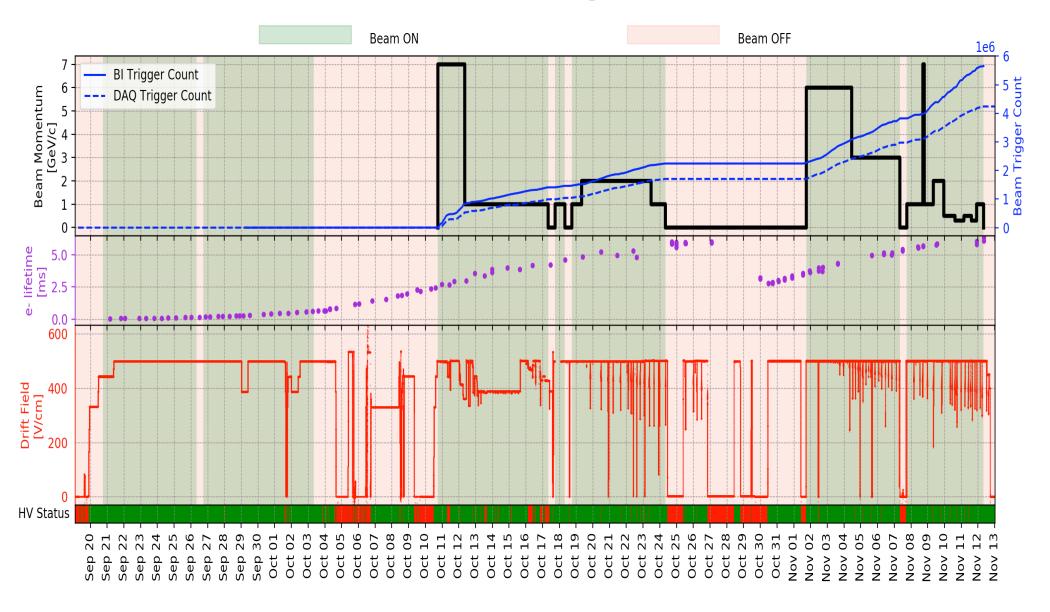

Static Temperature Probes to be provided by IFIC, Valencia

Currently no significant
LBNF/DUNE Scope for
Instrumentation or Calibration

Potential contributions to calibration from US funds (i.e. Gollipini ECA)

- Systems proposed :
 - Laser *
 - Pulsed Neutron Source
 - Radioactive source

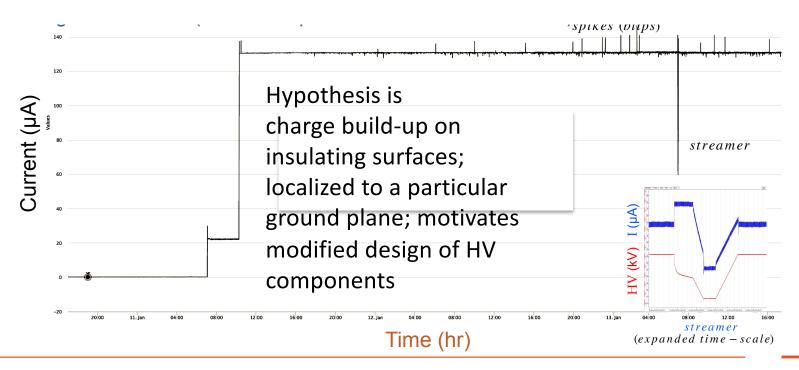
These systems had Scope reviews in June 2019; ProtoDUNE-II plans being developed; Follow-up reviews planned for early 2020


*Lasers are the most significant cost impact of these two areas

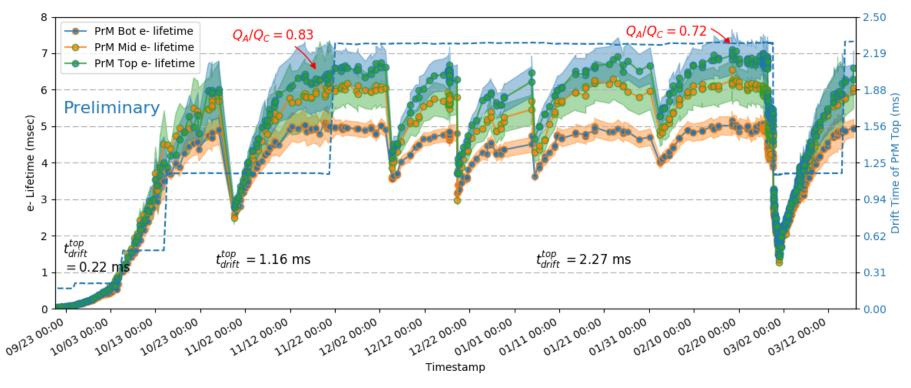
ProtoDUNE SP-I

- **Developed Model for Organization** of Construction, Component Delivery, Integration & Installation
 - Detector components were constructed at distributed sites and delivered to CERN
 - Integration in clean room (APA, Photon Detectors, Cold Electronics)
 - Cold box testing
 - Installation through Temporary Construction Opening
 - Installation on top of cryostat
- Demonstrated design maturity for APAs, High Voltage, Frontend electronics, Data Acquisition, Instrumentation
- Operational experience with cryogenics, purity, high voltage, instrumentation and data taking
- Data processing and analysis

Performance through beam run



PD-SP TPC Performance Summary


Detector Parameter	Specification	Goal	ProtoDUNE Performance
Electric Drift Field	> 250 V/cm	500 V/cm	500 V/cm
Electron Lifetime	> 3 ms	10 ms	> 15 ms (TPC)
Electronics Noise	< 1000 enc	ALARA	550-630 enc (raw)

High Voltage Performance

- Design voltage = 180 kV to give a drift field of 500V/cm over the 3.6 m drift length
- Steady operation at 180kV was achieved with two types of instabilities
 - Spikes or "blips" of ~10ms duration (self-quenching) and current draw of ~10μa
 - Streamers: sustained excessive current draw, a few per day; mitigated during data taking by auto reset; 98% live-time during beam operation

Purity—Electron life-time

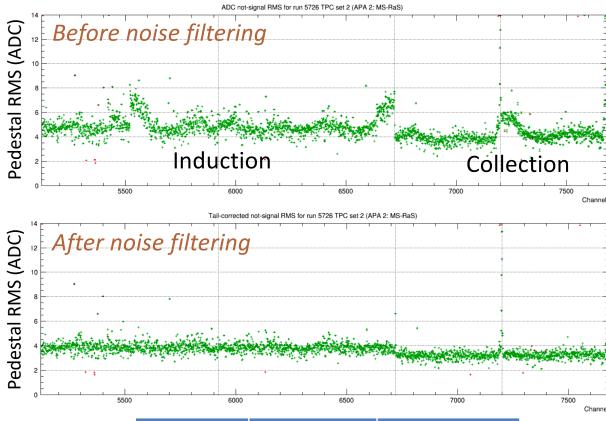
Liquid Argon purity routinely measured by three Purity Monitors at 1.8 m, 3.7 m, and 5.6 m from the bottom of the cryostat.

Purity monitors operated very stably since Sep 2018 and measured e-lifetime from $45\mu s$ to 7ms (sensitivity up to ~10 ms).

Lifetime determined with purity monitor measurements outside TPC are not equivalent to the l

16 Apr. 1, 2019

10/14/19


Flavio Cavanna |

LBNC Meeting:ProtoDUNE-SP Operations 2019

TPC Noise Levels

ENC = Equivalent Noise Charge

	Induction	Collection
Raw	630 e-	550 e⁻
After noise filter	500 e⁻	450 e⁻

Post-beam studies

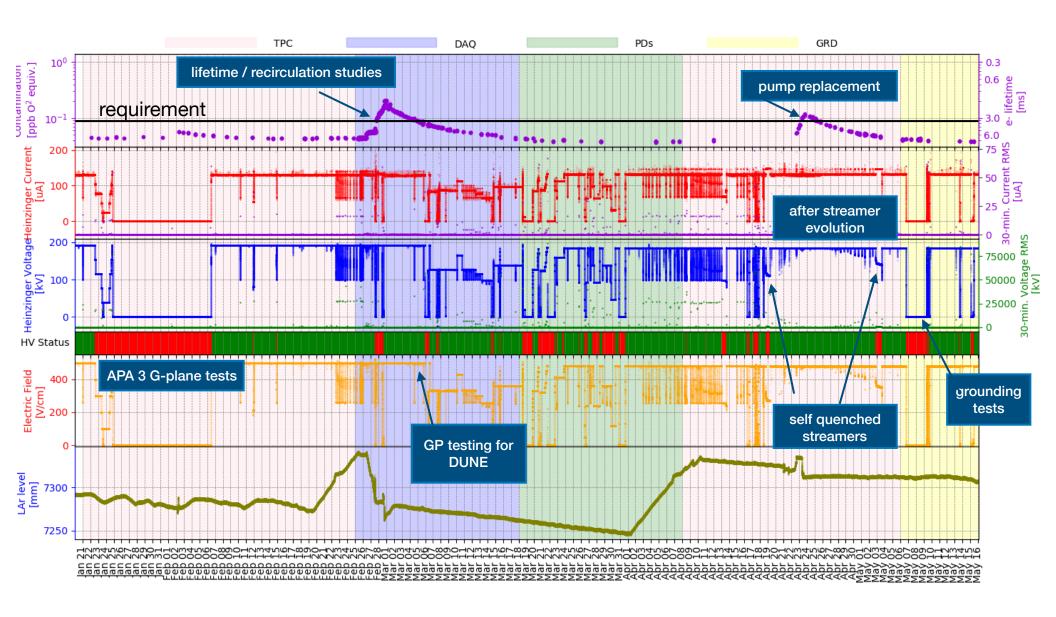
2019 Calendar

	JANUARY 2019							
Sun	Mon	Tue	Wed	Thu	Fri	Sat		
		1	2	3	4	5		
6	7	8	9	10	11	12		
13	14	15	16	17	18	19		
20	21	22	23	24	25	26		
27	28	29	30	31				

	APRIL 2019							
Sun	Mon	Tue	Wed	Thu	Fri	Sat		
	1	2	3	4	5	6		
7	8	9	10	11	12	13		
14	15	16	17	18	19	20		
21	22	23	24	25	26	27		
28	29	30						

|--|

	MAY 2019						
Sun	Mon	Tue	Wed	Thu	Fri	Sat	
			1	2	3	4	
5	6	7	8	9	10	11	
12	13	14	15	16	17	18	
19	20	21	22	23	24	25	
26	27	28	29	30	31		

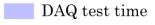

*CE tests will proceed in parallel to the	
other tests	

Grounding and noise

MARCH 2019

	JUNE 2019							
Sun	Mon	Tue	Wed	Thu	Fri	Sat		
						1		
2	3	4	5	6	7	8		
9	10	11	12	13	14	15		
16	17	18	19	20	21	22		
23	24	25	26	27	28	29		
30								

^{*}CE pulser runs and grounding/noise studies will be accommodates in the schedule upon request



2019 Calendar

		JU	LY 20	019	90.0	
Sun	Mon	Tue	Wed	Thu	Fri	Sat
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

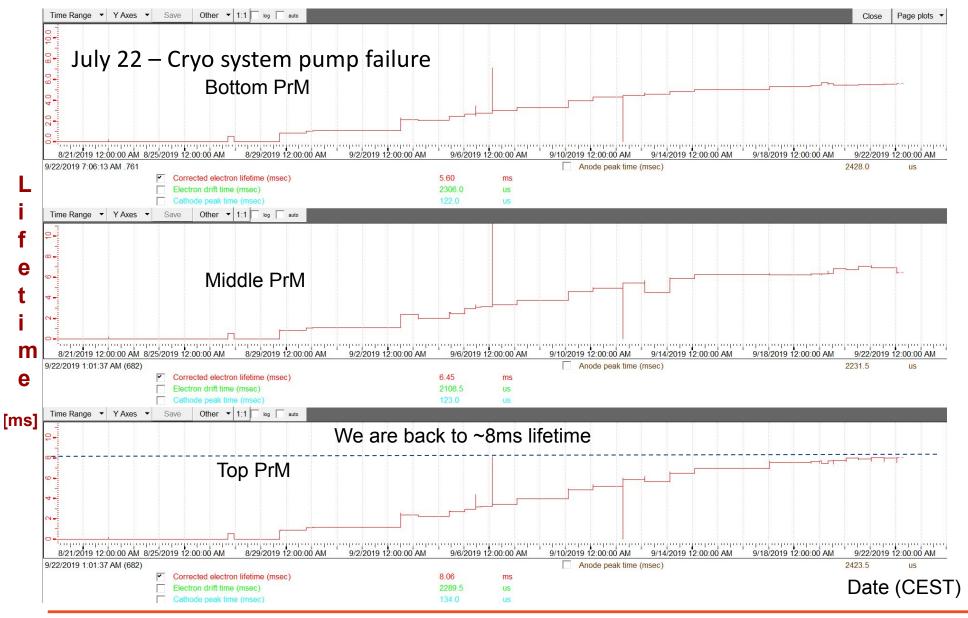
	OCTOBER 2019									
Sun	Mon	Tue	Wed	Thu	Fri	Sat				
		1	2	3	4	5				
6	7	8	9	10	11	12				
13	14	15	16	17	18	19				
20	21	22	23	24	25	26				
27	28	29	30	31						
	21.30									

HV+Purity+SCE+T test time

PD test tim

	<u>AUGUST 2019</u>								
Sun	Mon	Tue	Wed	Thu	Fri	Sat			
				1	2	3			
4	5	6	7	8	9	10			
11	12	13	14	15	16	17			
18	19	20	21	22	23	24			
25	26	27	28	29	30	31			

	NOVEMBER 2019									
Sun	Mon	Tue	Wed	Thu	Fri	Sat				
					1	2				
3	4	5	6	7	8	9				
10	11	12	13	14	15	16				
17	18	19	20	21	22	23				
24	25	26	27	28	29	30				

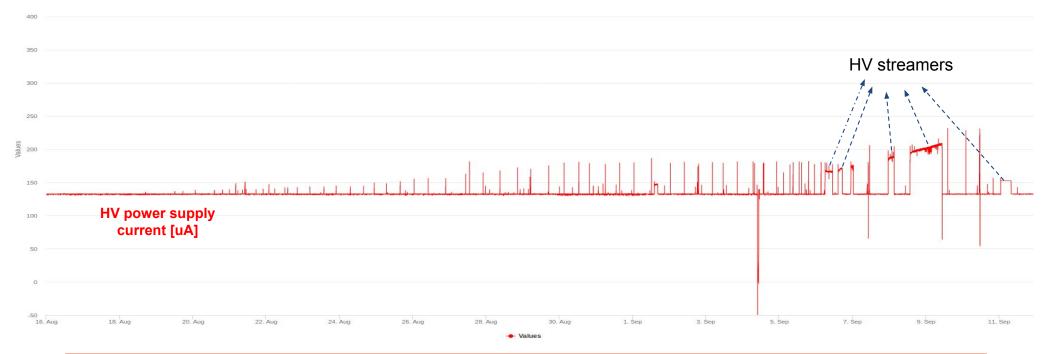

*CE tests will proceed in parallel	to t	he
$other\ tests$		

*CE pulser runs and grounding/noise studies will be accommodates in the schedule upon request

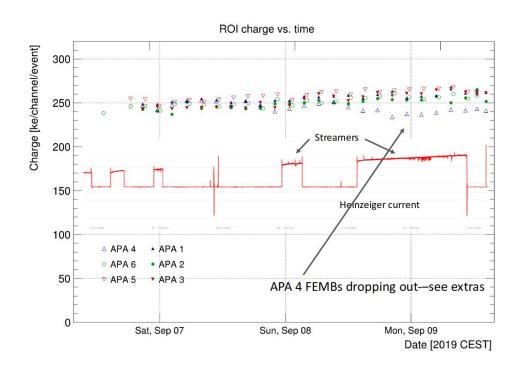
	SEPTEMBER 2019									
Sun	Mon	Tue	Wed	Thu	Fri	Sat				
1	2	3	4	5	6	7				
8	9	10	11	12	13	14				
15	16	17	18	19	20	21				
22	23	24	25	26	27	28				
29	30		ΔC) Te	sts					
		ر ا	, , ,		3.53					

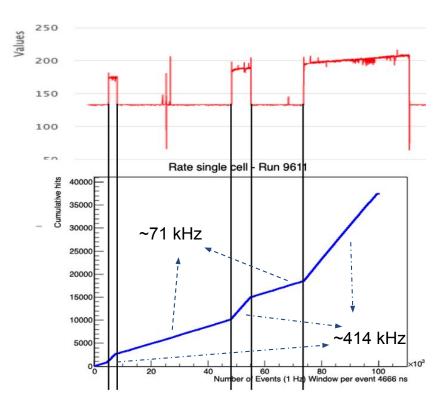
	DECEMBER 2019									
Sun	Mon	Tue	Wed	Thu	Fri	Sat				
1	2	3	4	5	6	7				
8	9	10	11	12	13	14				
15	16	17	18	19	20	21				
22	23	24	25	26	27	28				
29	30	31								

Current status of the lifetime (from purity monitors)



DUNE collaboration meeting - September 2019


HV activities


- Running stably @ 180 kV
- HV streamer situation
 - Before the cryo pump failure, we observed a decrease in their frequency from one every ~6 hr to one every ~20 hr
 - With the loss of lifetime, they disappeared, but they are now back again

Consequence of streamers

- Charge collection: no visible effects
- Light collection: increased rate of single p.e.

ProtoDUNE SP-II will have modified HV components and enhanced light collection to allow much more study

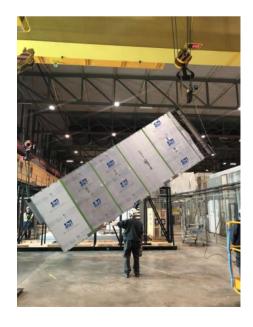
Plans for rest of 2019

- Due to lack of lifetime, much DAQ work completed in September
- October is also dedicated to DAQ
- Proposal has been made to study the effect of Xe doping for light collection
- Studies on-going in Building 182 to determine remaining program of studies

JULY 2019									
Sun	Mon	Tue	Wed	Thu	Fri	Sat			
	1	2	3	4	5	6			
7	8	9	10	11	12	13			
14	15	16	17	18	19	20			
21	22	23	24	25	26	27			
28	29	30	31						

OCTOBER 2019									
Sun	Mon	Tue	Wed	Thu	Fri	Sat			
		Ì	2	3	4	5			
6	7	8	9	10	11	12			
13	14	15	16	17	18	19			
20	21	22	23	24	25	26			
27	28	29	30	31					

	AUGUST 2019									
Sun	Mon	Tue	Wed	Thu	Fri	Sat				
				1	2	3				
4	5	6	7	8	9	10				
П	12	13	14	15	16	17				
18	19	20	21	22	23	24				
25	26	27	28	29	30	31				


	NOVEMBER 2019										
Sun	Mon	Tue	Wed	Thu	Fri	Sat					
					1	2					
3	4	5	6	7	8	9					
10	11	12	13	14	15	16					
17	18	19	20	21	22	23					
24	25	26	27	28	29	30					

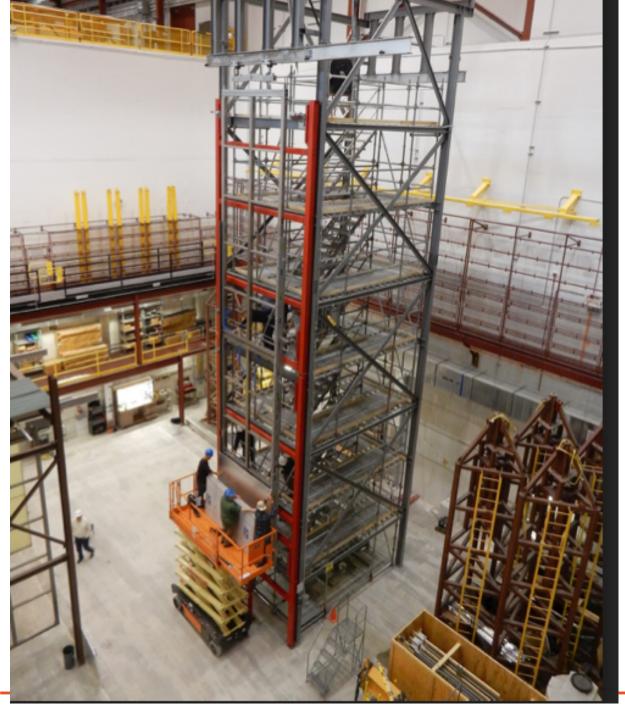
Sun	Mon	Tue	wed	THU	FII	Sui
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30					

DECEMBER 2019								
Sun	Mon	Tue	Wed	Thu	Fri	Sat		
1	2	3	4	5	6	7		
8	9	10	11	12	13	14		
15	16	17	18	19	20	21		
22	23	24	25	26	27	28		
29	30	31						

APA 7

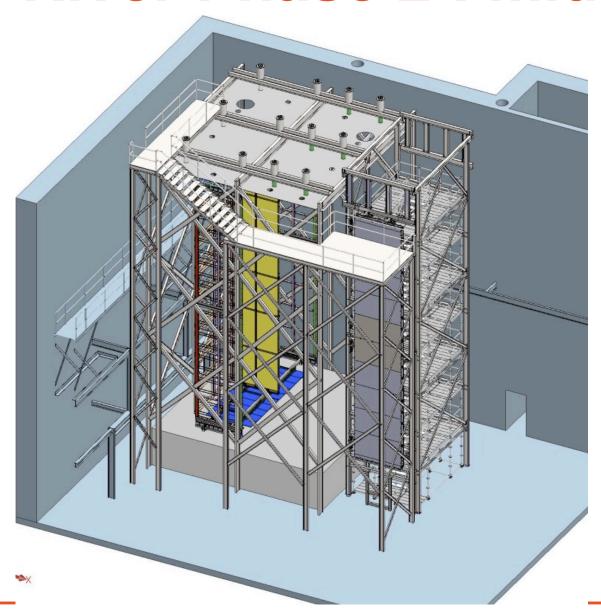
Test next round of FE Electronics

Ready to go!

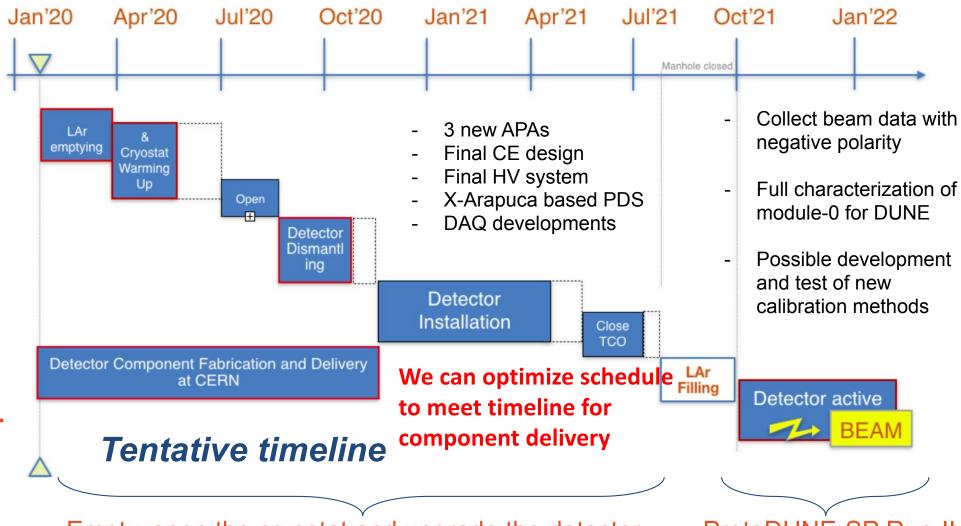


Full scale prototyping at Ash River

ProtoDUNE — DUNE



Installation Workshop Week of September 30


Concentrating on Tooling and Cabling

Ash River Phase 2: mid-2020

Planning for ProtoDUNE-SP II

Not driven by an immanent beam shutdown, as was case in PD I

Empty, open the cryostat and upgrade the detector

ProtoDUNE-SP Run-II

Matrix today and looking forward

2 Single Phase Modules										
Responsibility Matrix	US DOE	US NSF	UK	Brazil	Italy	CERN	Canada	Spain	Portugal	Opportunity
SP TPC Electronics System (SP-CE)	100%									
SP APA System (SP-APA)		50%	50%							
SP Photon Detection System (SP-PD)	10%									
SP HV System (SP-HV)	40%									
SP DAQ System (SP-DAQ)		18%	32%							
SP Cryo Inst and Slow Control (SP-CISC)										
SP Calibration Systems (SP-CAL)										

	Color code	Detectors
Agreements in place or funding secured		49%
Proposals under review		16%
Proposals in preparation		15%
Aspirational/beginning discussions		2%
Opportunity or Scope Reduction		18%
		100%

- Expect Brazil and Spain to turn from blue to light green in the very near future
- Italy will be more firm once costs for the Near Detector contribution is better understood
- Firming up commitments is tied to development of the Multiinstitutional MOU

Summary

- Construction of the DUNE detectors is the responsibility of the international DUNE collaboration through the organization of the Consortia
- The Single Phase Far Detector is at a very high level of design maturity as demonstrated in the successful operation of the ProtoDUNE SP-I
- Many lessons learned from ProtoDUNE have been incorporated into **DUNE** final designs
- ProtoDUNE-SP-II will provide the opportunity to construct, install and operate DUNE Module 0 components
- Full scale prototyping of components and tooling for installation are ongoing at Ash River
- We have a working model that assigns almost all major components for two SP far detector modules to either DOE, NSF or international partners; presented to the international Resources Review Board in September; Progress on MOU to be reported to RRB in April
- Opportunity for further partner contributions exist, in particular, in the areas of instrumentation and calibration