
Jonathan M. Paley�1

NOvA Databases -
Lessons Learned

(and opinions formed)

Jonathan Paley
DUNE Database Workshop

December 3, 2019

Jonathan M. Paley

• As an early-career postdoc (IOW, very naive), I was asked in 2006 if I’d be interested
in taking on responsibilities for NOvA databases. I knew nothing about databases,
but had long been curious about them, so I agreed.

• In this role, I was responsible for developing a system to provide QA/QC/Installation
tracking, including schema development (mostly for the NOvA Project). We called
this our “hardware database”.

• This role eventually evolved to also include:
• creation and maintenance of DAQ and DCS databases
• schema development for DAQ and DCS systems
• schema development for offline calibrations
• development of generic C++ API database interface

• As we went from “Project” to “Operating Experiment”, a lot of my effort went into
replicating the various databases and making the data available to the experiment
(note, “replication” may sound trivial, but we did not have the same tools back then!)

• As a result, I learned a great deal about databases (although I still feel like a novice),
and perhaps more importantly, I necessarily learned a great deal about nearly every
aspect of the experiment.

My Role

�2

Jonathan M. Paley

• Here I present some thoughts and opinions that I have formed over the years in my
role as the NOvA Database Coordinator.

• I am sure that I have forgotten to include some “lessons learned” in this talk, what I
mention here is more or less off the top of my scattered brain.

• If nothing else, here are my key take-away messages:
• we need both the DUNE/LBNF Project and DUNE Experiment to work together

and understand the needs of each other, and to communicate those needs to the
Database Teamwhat each needs more people involved

• we need very few people to work on the database implementation
• we need a lot of people to work on “interfaces” (see next slide)
• we need flexible database interfaces that focus on real use cases

• I don’t have many slides here, but hopefully there will be lots of discussion.

This Talk

�3

Jonathan M. Paley

• IMHO, databases are really all about interfaces. Eg:
• Project ↔ Experiment
• Online ↔ Offline
• Engineers | Technicians | Computing Pros ↔ Physicists
• Calibration experts ↔ Analyzers

• When someone says “we need a database to…”, what they most likely mean is “we
need to create an interface for a user to determine ‘Y’ based on information from a
database table that contains ‘X’”.

• creating databases and tables is the “easy” part**
• designing the tables is slightly trickier**
• understanding both sides of the interfaces is critical and non-trivial. Requires buy-in

from both sides.
• Example: Project needs to track purchase, delivery, test-stand results and installation of

component X in detector. 5 years after the Project has ended, experiment needs to
extract test-stand results for X installed in location A of the detector.

Lesson Learned: What “Databases” Really
Means in Experiments

�4

** Labs and universities have experts who can either do the work, or provide excellent guidance.

Jonathan M. Paley

• Buy-in means:
• agreement to store all relevant data in a database in a timely fashion
• commitment to providing documentation with details of the meaning of, and

relationships between, data columns
• person-power to help with interfaces, both to push to and pull from the database. In

many cases, several different interfaces may be necessary.
• On NOvA, the Project was successful in getting “factory” managers to push relevant

information to databases.
• A hardware database and general interface to push data to it were set up by Fermilab.
• Nevertheless, several factories went their own way and stored data in a local

database because it was “quick and easy” (meaning, they didn’t take the time to
document their tables).

• There was very little (~no) thought put into how to make this information easily
accessible to the collaboration.

• As a result, many hundreds of hours have been spent by collaborators to figure out how
to extract relevant information needed for calibrations and improved simulations. In
many cases, we have had to give up on getting “as-built” information.

Lesson Learned: Get Buy-In From Everyone

�5

Jonathan M. Paley

• I was the only person tasked with the role described on the previous slide.
• The “Database Czar” should not be an early career physicist. It can get political.
• However, there are real benefits to being involved, so early career physicists should

be encouraged to work on some aspects.
• That said, a great deal of institutional knowledge has been lost on NOvA as either

early career or temporary Project workers moved on to greener pastures without
properly documenting the meaning of the content of their tables. So one of the
core responsibilities of team members is documentation.

• Make use of database expertise whenever/wherever available. Eg, I was
eventually able to pass the responsibility for maintaining and replicating all NOvA
database servers on to the database admins in the Fermilab CD.
• They have real, relevant training, and do a way better job at this than I do.
• It freed me up to focus more on other things, both in NOvA operations and data

analysis.

Lesson Learned: Build a Team from the Beginning

�6

Jonathan M. Paley

• Fact: Databases are an afterthought and not integrated
into the design of the Projects/Experiments.

• Fact: Our experiments are complicated, and many
systems already have databases set up (eg, beam, slow
controls, DAQ, etc.).

• Fact: Cost and schedule pressures lead many to the
path of least resistance, which is to implement and
populate a local database.

• On NOvA, I tried early on to have everyone store their
information in a single database. This attempt failed, but
I later arrived at the conclusion that this does not need to
be a requirement, and in fact would not solve the
underlying problem of lack of proper interfaces.

• In many cases, “local” databases can be further distilled,
the data reformatted and copied to a central server for
convenient access to collaborators. This was done on
both NOvA and ProtoDUNE.

• It is critical that our offline database interface be
designed with the reality that data will likely live in
multiple locations and/or have different formats.

Lesson Learned: Accept that you will be dealing
with multiple databases

�7

Jonathan M. Paley

Central
DB

(PSQL)

Multiple Databases

�7

Slow
Controls
(Oracle)

DAQ
History +

Configuration
(MongoDB)Copy to psql condb

schema Copy to psql Ucondb
schema

Beam
Instrum
(Oracle)

Copy to
 psql co

ndb

sch
ema

condbschemasimple RDB

schema
Offline

Calibration
(PSQL)

Installation
QA/QC
(PSQL)

CERN

FNAL

Jonathan M. Paley

• Analyzers have better things to do than to learn how to query and write to a
database table.

• Although there are C and Python APIs for databases, they generally require the
user to execute SQL statements.

• On NOvA we have used a DBI that generates and executes the necessary queries,
and unpacks the data under the hood.
• This has worked well for most tables, eg, DAQ, DCS and Calibration.
• Strongly suggest we use something like this in DUNE. (note, we use a de-

NOvAfied version of this in ProtoDUNE).

�8

Hardware version of
spaghetti code

Lesson Learned: Analyzers Don’t Want to
Need to Know How to Query a Database

• I feel this approach avoided the development of
spaghetti code throughout the NOvA code base
(although one could argue that the DBI is a bit of
spaghetti code itself, but at least it’s centralized…)

• Although the number of people who will actually
develop code to extract data from databases is
very small, it’s worthwhile to have a simple DBI.

Jonathan M. Paley

Lesson Learned: Never Connect Directly to a DB

• Every experiment I have worked on that made use of modern grid computing has crashed
“the database” by having too many simultaneous jobs try to read tables.

• The open source databases I have experience with can typically handle 100-200
simultaneous connections.

• Web services typically handle “traffic” much better.
• Fermilab developed several new database web services that also cache query results so that

repeated queries don’t keep going back to the database. This was a game changer for us.
• Three types of web services:
• Query Engine (QE): web front end to simple database queries of a single table.
• Conditions Database (condb): optimized for structured data that are a function of a

“validity time” (timestamp+detector+dataType+…)
• Unstructured Conditions Database (ucondb): similar to condb in concept, but

unstructured data
• Note, we did have to add more web servers specifically for NOvA to handle the large load.
• Additional optimizations of how we actually record and query in our own offline code also

significantly reduced the load on the web service and sped up user jobs.

�9

Jonathan M. Paley

• The ability to “version” a table means that one can take a snapshot of the state of
the database at any given time, and refer to that state and any time later.
• Ensures reproducibility.
• Requiring groups to version a table prior to large production campaigns ensures

someone is paying attention to the state of the table.
• The ability to “patch” a table means that one can make small changes to individual

entries in the table.
• A version cannot be directly patched. A patch applied to a version would create a

new “state”, likely requiring a new version.
• Patches are important for tables with very large numbers of entries, especially

conditions tables that span a large range of validity times.
• The Fermilab condb implemented versioning (via tags) from the very beginning. I

believe patching is a work in progress.
• Versioning has played a critical role in NOvA offline production campaign, and has

ensured reproducibility.

�10

Lesson Learned: Ability to Version and Patch
Tables Should Be a Requirement

