Calibration and Cryogenic Instrumentation

Nuno Barros, for the Calibration and Cryogenic Instrumentation

Database Workshop Boulder, December 4, 2019

Summary

- Calibration (Cal)
 - Introduction to the calibration systems
 - Database use cases
 - Data volume estimates
 - Database access
- Cryogenic Instrumentation (CI)
 - Introduction to CI systems
 - Database use cases
 - Notes on access

Disclaimers

- Slow Controls are not covered in these notes
 - Moving from CISC to DAQ
 - Both CAL and CI feed into slow control DBs
 - Slow changing data
- Discussion on some of these details is still ongoing
 - Where possible and unclear, conservative estimates are provided
- In these notes there are references to multiple "databases"
 - These are not necessarily different physical databases but rather "different classes of data" that differ in origin, purpose and/or use

Calibration systems

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Calibration systems

Ionisation laser

- High intensity laser, to ionise argon along tracks
- Measure E field map, possibly electron lifetime
- Pulsed neutron source (PNS)
 - Neutron capture events
- Radioactive Source
 - Single 9 MeV gamma from Cf/Ni source
 - Deployed outside field cage (mechanical movement)
- Photoelectron laser
- Laser beam location system (LBLS)

Ionisation laser

Laser Ionisation System

• 9 lasers, 12 periscopes;

Design 1 (SBND design) FC penetration — **baseline design**

developed from the SBND design); No FC penetration — **alternative**

7

Photo-Electron Laser

- Bring in 266 nm light via optic fibers to the APA and illuminate photocathode (AI) tabs on the CPA.
 - Precise estimation of electron drift time
 - Diagnosis: check if detector is awake
 - Measure drift velocity and field distortions
 - Vertex reconstruction on CPA

Radioactive source

- 9 MeV single gamma, untagged, deployable close to end-walls
- Low energy response with no pile-up

Types of Databases

HardwareDB

• (Mostly) Static information about the hardware during construction

ConfigurationDB

• Run specific configuration information — things that are relevant and attached to specific runs

CalibrationDB

· Calibration specific data. Timestamped, can have data stored outside of a run

• DUNE DB

Calibration outputs used for analysis: calibration constants

Slow Controls DB (covered by the DAQ group)

• Slow changing operational information (temperature, HV, etc)

Hardware DB

- Static information of calibration hardware components
 - Position, identifiers, relative locations
 - If parts are barcode tagged, include ID
 - Should have a timestamp or a version+timestamp
 - Should also accommodate references/attachments of any relevant documents
 - At each point in time, a single object should be valid
 - If a new version is uploaded, it becomes the up-to-date information from then on (until a newer version)
 - Versions should not change unless a major change in hardware disposition occurs (upgrades, remapping, re-routing, removal, etc)
 - DB population rate: once at construction
 - Occasionally afterwards with significant hardware changes

Configuration DB

- Run based information of calibration hardware configuration
 - Which systems are on
 - Which systems are to be used
 - List of source configurations within a run
 - Source positions (radioactive source)
 - Laser directions (laser)
 - DB population rate: 1/run
- Essentially, all configuration information that is passed to the calibration system/DAQ during a calibration run
- The exact schema

13

Configuration DB

- Data structure
 - Moderately complex structure.
 - Needs to account for hardware configuration for the whole run
 - For example, the laser system is expected to fire over various predefined directions during a single run.
 - Schema needs further internal discussion.
 - Requires iteration with DAQ group about flow of information
- Expected data volume
 - Light. ~ MB /calibration run

• Calibration analysis specific information (only pertinent to the calibration analyses)

- Data schema and storage granularity depends on the specific system
- Laser system
 - Part ID
 - Timestamp (requested + served)
 - Part state
 - Encoder position, filter position, diode intensity
- PNS
 - intensity/integrated charge
 - Time (requested+served)
- Radioactive source
 - Source position (motor steps/encoder position)
- DB population rate: 5 10 Hz, when operating some calibration systems
- This information needs to be stored also outside a DAQ run
 - We can for example do alignment checks during a short shutdown

- Data structure
 - Relatively simple (in principle could be common to all systems)
 - Part ID
 - Timestamp (requested + served)
 - Part state
 - Encoder position, filter position, diode intensity
- Note the cross-reference with the hardware/construction database (part ID)

Rough estimation of data volume

- A very conservative, worst (best) case estimate
- Sampling of 10 Hz with
 - T_{req} (64 bit); T_{serve} (64 bit); Part ID (32 bit); Part state (32 bit)
- 24 byte words —> 240 B/s / channel
- 4 channels / feedthrough —> 960 B/s
- 10 feedthroughs -> assuming we could actually fire all 10 at the same time
 - 9.375 MB/s
- Running over a live week per year (3 live days per scan/2 scans per year)
 - 5.40 TB/year
- 3 day scan assumed sequential laser firing. There is almost an order of magnitude of room to work, if parallelisation possible (TBD)
- PE laser system will have similar requirements (also aimed sampling of 10 Hz)

DUNE DB

- Calibration constants (ConditionsDB?)
 - Structure will depend on type of calibration
 - Laser (10 parameters)
 - 3 coordinates of electric field and drift velocity
 - 1 electron lifetime
 - 3 parameters of recombination
 - PNS (4 parameters)
 - PE laser
 - Laser intensity, photocathode properties
 - Possibly other quantities (evaluation ongoing)
 - Data should be valid over run periods/timestamps
 - These could change (to allow re-analysis of data)
 - It would be good to have versioning, but the latest version should always be the default

DUNE DB

- Data volumes (rough estimate)
 - Laser (worst case)
 - 10⁷ voxels of 10x10x10 cm (highest granularity)
 - May decide on lower number of voxels
 - 10 float parameters —> ~400 MB / scan (two scans per year)
 - PNS
 - Much larger voxels (~10k voxels)
 - Possibly 4 floats per voxel —> ~40 MB / scan

Database Access

- Depends on the type of database
- Hardware DB
 - Browsable based on timestamp (default now())
 - Query based in timestamp
- Configuration DB
 - Browsable based on run
 - Access necessary from physics calibration analysis algorithms

Calibration DB

- Browsable based on timestamp
- In future may set up automated data quality control
- DUNE DB
 - Accessible from physics analysis jobs (should be default)
 - (optionally) Browsable from outside analysis code

Database Access

- Possibility to implement access through provided APIs
 - If possible APIs from the analysis framework and outside
 - Not necessarily within the analysis framework
 - For example, one could be interested to run data quality in a standalone system
- Examples for use of each database system
 - Scripts/small programs that would show how to get the information about a particular system, for a specified period of time
 - Show how to do this both from inside the overall analysis framework and outside

Cryogenic Instrumentation

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Cryogenic Instrumentation

- Purity Monitors
- Thermometers (individual sensors & long movable thermometers) in liquid
- Thermometer in gas
- Gas analyzers
- Cameras & associated light systems
- Level Meters
- Pressure meters
- Cryogenics Recirculation system

Database use cases

- Assuming/need same structure of 4 distinct databases, as in the calibration
- Hardware DB:
 - Same use cases as calibration (and likely most other systems)
 - Possibility to have timestamped versioning would be useful, for the case of upgrades, replacements, etc
 - CI may have some components (cameras) that may be moved from place to place in a ~month timescale — new versions

Configuration DB

- Configurations of the different instrumentations
 - Eg.: Configuration of the gas analyser
 - Not expected to change more than 1/day during commissioning and 1/week during operation
 - Purity monitors
 - Could change even within a run (e.g: Xe flash lamp intensity)
 - Movable thermometer systems
 - Cameras
 - Moving them to point into a different direction during operation

- Unlike Calibration systems, most CI systems run continuously
 - Could follow a data structure similar to the proposed Calibration systems
 - Still need to assess granularity of data input and estimate data volumes
 - •

DUNE DB

- Information from CI relevant as input to calibration analyses, data quality and operations
 - LAr purity values from purity monitors
 - Extrapolated purity values
 - Liquid argon level
- Formats change widely depending on the system
 - Most consist of arrays single values
 - Each system provides a single number, but there are multiple units of the same system
 - Others of quite complex structure
 - eg.: images from cameras to be used for data quality assessment

