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My experience with Conditions Database Management

• I worked on ATLAS conditions management for nearly a decade 
• I started as ATLAS Conditions Coordinator in 2008-2012 
• ATLAS Data Preparation Coordinator 2014-2016 
• Worked on upgrading Conditions DB design to “best practice” 

• I gathered some experts for the HSF Community White Paper (contributions mainly from 
LHC+Belle II) 
• We converged on a definition of best practice: 
• https://arxiv.org/abs/1901.05429 

• I’m now responsible for US Software and Computing lead for Belle II 
• The Belle II Conditions DB design is close to the HSF best practice 
• Responsible for migrating to Rucio data management 

• and I’m BNL’s S&C technical contact for DUNE
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https://arxiv.org/abs/1901.05429


Conditions management
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• Data will be processed several times, (many times early on) - organising the conditions 
to be used in offline processing can be a real bottleneck to delivering quality physics



Conditions interfaces for ATLAS
• Slow control measurements and similar that need to be refined (bigger IOVs) before 

being injected into Conditions DB - some were missed 
• Components still got missed and that broke overlay (and still does) 

• Automated calibrations wrote to the Conditions DB with appropriate granularity 
• Trigger and DAQ wrote configurations to the Conditions DB 
• Expert calibrations wrote directly to the same Conditions DB 
• Online (HLT) used an independent instance of Conditions DB (different content) 
• … not exhaustive, we need to define these for DUNE of course… 

• Software framework view: 
• Global tag for configuration: GlobalTag = “FinalFinalBestCalibration2040” 

• resolves to payload-type tags for every payload used in reco 
• Reco module asks a ConditionsService for payload-type and gives a timestamp 

• cdbSvc->Get(“MyCalibrationType”, Run_number)
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ATLAS Conditions DB Design
• Schematic of current ATLAS infrastructure, based on COOL 

• COOL was an LCG project: http://lcgapp.cern.ch/project/CondDB/COOL_2_1_0/ 
• ATLAS used it for ALL use cases, and consequently it became very complicated 
• COOL designed to work with multiple backends, but the ATLAS solution ended up 

tightly coupled to the s/w framework 
• Complicated schema defined, and then expertise disappeared quickly 

• Much DBA effort needed to make oracle queries performant and performance really 
relies on a powerful oracle backend, much s/w framework service expertise needed to 
make service performant 

• Frontier caching layer absolutely required to avoid making (complicated) queries to the 
DB, which in turn made Frontier complicated
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Conditions Data for Run 3Paul Laycock: Upgrade week plenary, March 31st

Current problems
• COOL has been successfully used in Runs 1 and 2


‣ But it only performs well for offline because we introduced Frontier 

• We are tied to COOL, and its support is diminishing

‣ By Run 3 we would be the only experiment using it 

• We made very diverse requirements on COOL and we use them

‣ Huge diversity of (undocumented) payload formats 

‣ Compare to CMS - only serialised C++, all in one package 

• We have thousands of tables

‣ One schema per system, online and offline, data and MC, all of the tables required to 

support COOL design, problematic to manage so many tables
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Conditions Data for Run 3Paul Laycock: Upgrade week plenary, March 31st

Current problems (2)
• COOL doesn’t do everything


‣ Global tags and UPD protection means lots of custom (AtlCool) tools 

• We constrain detector monitoring granularity with offline requirements

‣ DCS data are written to oracle and then copied to COOL for offline use 

• By design, COOL isn’t built for cacheable queries

‣ There are infinite ways of getting to the same payload 

‣ Retrieve IOVs and payloads at the same time 

‣ Lots of DBA expert time to tune oracle queries, plus IOVDbSvc optimisations to achieve 
good performance, but serious problems remain, especially Overlay 

• We do not have many conditions experts…

‣ …and yet we have the most complex conditions database, ATLAS will run for 20 more years
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HSF/Belle II Conditions Design
• REST Interfaces 
• Metadata Model: relational DB 
• Payloads looks like noSQL 

• Addressed by (unique) hash 
• Belle II separates these 

• Single tables for payload, tags, IOVs 
• Payloads factorised from metadata 
• No need to define a schema per 

subsystem, it’s just a BLOB 

• IOVs and payloads resolved 
independently: 
• Only use start time - cachable IOV 

queries (1st query) 
• Uniquely identified payloads - 

minimal use of cache 
• Cache-friendly design
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https://belle2db.sdcc.bnl.gov/b2s/rest/v2/iovs/?gtName=B2BII&runNumber=6



Conditions for HPC and Analysis
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HPC and Analysis Conditions
• For Belle II, the same conditions 

database service is used for user 
analysis conditions
• Encourages good practice for 

conditions book-keeping
• Discourages copy-and-paste from 

twiki/afs/bloke-down-pub

• Failover strategy (local, cvmfs, 
REST service) means analysers can 
work offline after the first run

• HPCs with cvmfs are covered, 
otherwise may think of a DB 
snapshot (when conditions are well 
known and stable) or an edge service 
for more flexibility
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• A design where you factor out the path-to-file can be a natural fit to HPC


