
Conditions Database: 
Experience from LHC and Belle II 
(and how I can finally sleep at night)
Paul Laycock



My experience with Conditions Database Management

• I worked on ATLAS conditions management for nearly a decade 
• I started as ATLAS Conditions Coordinator in 2008-2012 
• ATLAS Data Preparation Coordinator 2014-2016 
• Worked on upgrading Conditions DB design to “best practice” 

• I gathered some experts for the HSF Community White Paper (contributions mainly from 
LHC+Belle II) 
• We converged on a definition of best practice: 
• https://arxiv.org/abs/1901.05429 

• I’m now responsible for US Software and Computing lead for Belle II 
• The Belle II Conditions DB design is close to the HSF best practice 
• Responsible for migrating to Rucio data management 

• and I’m BNL’s S&C technical contact for DUNE

!2

https://arxiv.org/abs/1901.05429


Conditions management

!3

• Data will be processed several times, (many times early on) - organising the conditions 
to be used in offline processing can be a real bottleneck to delivering quality physics



Conditions interfaces for ATLAS
• Slow control measurements and similar that need to be refined (bigger IOVs) before 

being injected into Conditions DB - some were missed 
• Components still got missed and that broke overlay (and still does) 

• Automated calibrations wrote to the Conditions DB with appropriate granularity 
• Trigger and DAQ wrote configurations to the Conditions DB 
• Expert calibrations wrote directly to the same Conditions DB 
• Online (HLT) used an independent instance of Conditions DB (different content) 
• … not exhaustive, we need to define these for DUNE of course… 

• Software framework view: 
• Global tag for configuration: GlobalTag = “FinalFinalBestCalibration2040” 

• resolves to payload-type tags for every payload used in reco 
• Reco module asks a ConditionsService for payload-type and gives a timestamp 

• cdbSvc->Get(“MyCalibrationType”, Run_number)

!4



ATLAS Conditions DB Design
• Schematic of current ATLAS infrastructure, based on COOL 

• COOL was an LCG project: http://lcgapp.cern.ch/project/CondDB/COOL_2_1_0/ 
• ATLAS used it for ALL use cases, and consequently it became very complicated 
• COOL designed to work with multiple backends, but the ATLAS solution ended up 

tightly coupled to the s/w framework 
• Complicated schema defined, and then expertise disappeared quickly 

• Much DBA effort needed to make oracle queries performant and performance really 
relies on a powerful oracle backend, much s/w framework service expertise needed to 
make service performant 

• Frontier caching layer absolutely required to avoid making (complicated) queries to the 
DB, which in turn made Frontier complicated

!5

Event processing

Relational 
DB

Software 
Framework

Coral
CoralFrontier

Cool

Tomcat

Frontier

JDBC

WEB

SQUID cache

http://lcgapp.cern.ch/project/CondDB/COOL_2_1_0/


Conditions Data for Run 3Paul Laycock: Upgrade week plenary, March 31st

Current problems
• COOL has been successfully used in Runs 1 and 2


‣ But it only performs well for offline because we introduced Frontier 

• We are tied to COOL, and its support is diminishing

‣ By Run 3 we would be the only experiment using it 

• We made very diverse requirements on COOL and we use them

‣ Huge diversity of (undocumented) payload formats 

‣ Compare to CMS - only serialised C++, all in one package 

• We have thousands of tables

‣ One schema per system, online and offline, data and MC, all of the tables required to 

support COOL design, problematic to manage so many tables

 6



Conditions Data for Run 3Paul Laycock: Upgrade week plenary, March 31st

Current problems (2)
• COOL doesn’t do everything


‣ Global tags and UPD protection means lots of custom (AtlCool) tools 

• We constrain detector monitoring granularity with offline requirements

‣ DCS data are written to oracle and then copied to COOL for offline use 

• By design, COOL isn’t built for cacheable queries

‣ There are infinite ways of getting to the same payload 

‣ Retrieve IOVs and payloads at the same time 

‣ Lots of DBA expert time to tune oracle queries, plus IOVDbSvc optimisations to achieve 
good performance, but serious problems remain, especially Overlay 

• We do not have many conditions experts…

‣ …and yet we have the most complex conditions database, ATLAS will run for 20 more years

 7



HSF/Belle II Conditions Design
• REST Interfaces 
• Metadata Model: relational DB 
• Payloads looks like noSQL 

• Addressed by (unique) hash 
• Belle II separates these 

• Single tables for payload, tags, IOVs 
• Payloads factorised from metadata 
• No need to define a schema per 

subsystem, it’s just a BLOB 

• IOVs and payloads resolved 
independently: 
• Only use start time - cachable IOV 

queries (1st query) 
• Uniquely identified payloads - 

minimal use of cache 
• Cache-friendly design

!8

https://belle2db.sdcc.bnl.gov/b2s/rest/v2/iovs/?gtName=B2BII&runNumber=6



Conditions for HPC and Analysis

!9

HPC and Analysis Conditions
• For Belle II, the same conditions 

database service is used for user 
analysis conditions
• Encourages good practice for 

conditions book-keeping
• Discourages copy-and-paste from 

twiki/afs/bloke-down-pub

• Failover strategy (local, cvmfs, 
REST service) means analysers can 
work offline after the first run

• HPCs with cvmfs are covered, 
otherwise may think of a DB 
snapshot (when conditions are well 
known and stable) or an edge service 
for more flexibility

16

17

• A design where you factor out the path-to-file can be a natural fit to HPC


