Low-energy electron data analysis for DUNE

Aleena Rafique Young Scientist Symposium Series December 3rd, 2019

Deep Underground Neutrino Experiment (DUNE)

DUNE will be a world-class neutrino observatory

- 1300 km baseline
- Consists of a large LArTPC far (40 kTon) and near detectors
- A broad and rich physics program: Neutrino oscillations, CP violation searches in the neutrino sector, neutrino mass hierarchy, supernova neutrinos, baryon number violation searches
- The world's most intense neutrino beam from Fermilab
- A deep underground site, massive liquid argon detectors and a precision near detector
 ^{12/03/19}
 A. Rafique, ANL

ProtoDUNE Single Phase

- ~7×6×7 m³ (770 tons of LAr) in charged test beam at CERN
- ProtoDUNE-SP operating since September 2018
- Accumulating test-beam data to understand/calibrate response of detector to different particle species
- A crucial part of the DUNE effort towards the construction of the first DUNE
- Prototyping production and installation procedures for DUNE Far Detector Design
- Validating design from perspective of basic detector performance
- Demonstrating long term operational stability of the detector

ProtoDUNE-SP at CERN neutrino platform

Principle of LArTPC

LArTPCs make 3D reconstruction possible.

- Wire planes give 2D position information
- The third dimension is obtained by combining timing information (t_0) with drift velocity $(v_d) \rightarrow$ hence, a "Time projection chamber"

ProtoDUNE TPC

Michel electrons

- Michel electrons are electrons from the decay of muons (0-50 MeV)
- Common channels (in ProtoDUNE):

•
$$\mu^+ \rightarrow e^+ \bar{\nu}_\mu \nu_e$$
 (80%)

•
$$\mu \rightarrow e^- \nu_\mu \bar{\nu}_e n \gamma$$
 (20%)

- Analysis makes use of low energy shower reconstruction— useful for many DUNE analyses
- Analysis goals:
 - Obtain michel electron energy spectrum
 - Correlate these events with the photon detector data

Michel event display in ProtoDUNE

Michel event selection

Sample purity ~90%

Energy spectrum from true michel reconstructed hits

•
$$E = \sum_{i=coll.\ plane\ hits} \frac{Q_i *Cx *Cyz *Wion*Norm_factor}{Calib_const*Recomb_factor}$$

Where

Q_i = charge deposited on a hit

 C_x , C_{yz} = correction factors, remove non-uniformity in dQdx values due to nonresponsive wires

Wion = 23.6e-6; from ArgoNeuT experiment

Norm_factor = normalizes the dQ/dx values to the dQ/dx at anode Calib_const = converts dQ/dx in ADC/cm into dE/dx in MeV/cm Recomb_factor = 0.7; to incorporate the recombination effects

A. Rafique, ANL

Michel energy reconstruction

- Performed in two ways:
 - Nearest reconstructed shower energy from the corresponding reco hits
 - Construction of a cone with an opening angle and a length

Recovering some michel hits from parent muon

- Look at the charge deposition at the last 10 hits of reco muons
- Charge dep = $(Q_i Q_{i-1})/Q_{i-1}$
- After removing hits beyond the maximum truncated charge value

Michel energy spectrum in MC

Michel energy data and MC comparison

A very good agreement in ProtoDUNE data and simulation

Summary

- Obtained a pure sample of michel events in ProtoDUNE
- Were able to recover most of the michel hits
- Good data and MC agreement for the michel energy spectrum
- In the future, this study will include the observation and search for michel electrons in photon detector system of the ProtoDUNE experiment
- This study will present a ground to machine learning reconstruction techniques in ProtoDUNE