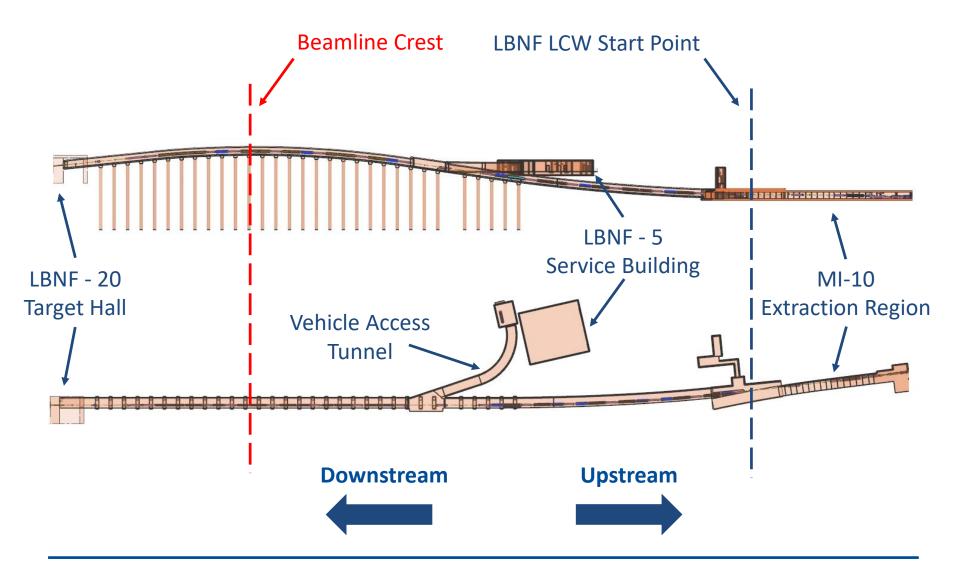
Primary Beamline Low Conductivity Water (LCW) Preliminary Design Review

Technical Design Aspects

131.01.03.03.02.04.02 Primary Water LCW System 131.01.03.03.02.04.03 Electrical Bus

Noah Curfman October 31, 2019



System Operational Scope

Summary of Major System Updates

- Re-arrangement of service building
 - MVA staging area merged with service building
 - Re-arrangement of dipole power supplies
 - Significant changes to pipe and bus routing
- Minor magnet lattice re-arrangements
- LBNF LCW fill system from MI added
- System now uses one primary pump with one hot spare

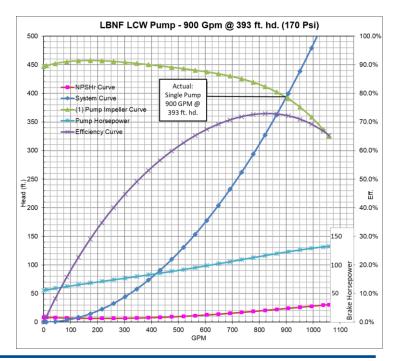
System Operational Scope

- Provide LCW cooling
 - LBNF magnets downstream of Q203
 - LBNF magnet power supplies in LBNF 5
 - Horn power supplies in LBNF 20
 - Water cooled bus
- Manage dipole bus routing and hydraulics
 - System does not include cable-connected magnets
 - System does not include bus-to-magnet connections (flags)
 - Includes pump room bus shielding
- Provide LCW makeup for RAW room

System Design Requirements

- Meet previously described operational goals
- Require minimal unscheduled interventions
- Meet established lab practices for flow and capacity
- Operate over a range of elevations determined by CF
- Use pond water for cooling and MI LCW for fill
- Conform to ASME B31.3 and FESHM 5031.1

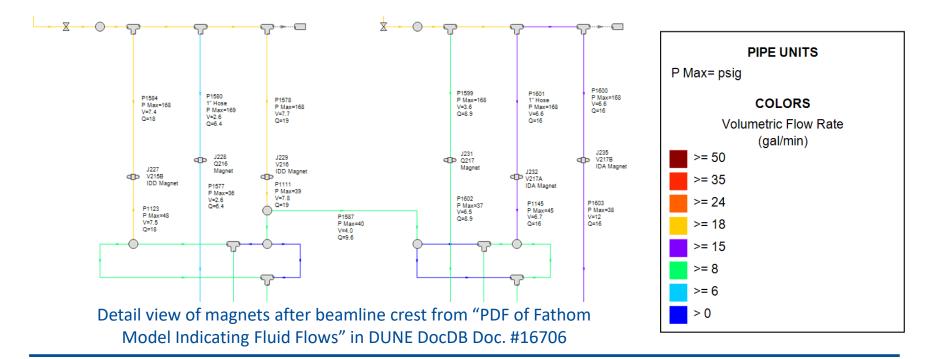
Fluid	Low Conductivity Water
Resistivity	9MΩ·cm or better
Nominal Temperature	95°F
Radioactivity	< 1900 pCi/ml
MAWP	200 psig


Component Summary

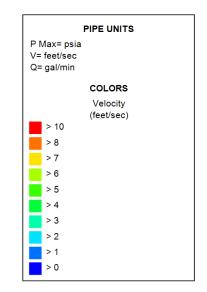
- 41 water cooled magnets 502 GPM, 477 kW
 - 2 QQU Q60 Quadrupoles
 - 15 QQB 3Q120 Quadrupoles
 - 12 IDA Dipoles
 - 12 IDD Dipoles
- 24 power supplies 228 GPM, 178 kW
 - 15 quadrupole power supplies
 - 7 dipole power supplies
 - 2 horn power supplies
- 4,612 feet of 2"x2" dipole bus 95 GPM, 193 kW
 - 5 pairs of bus

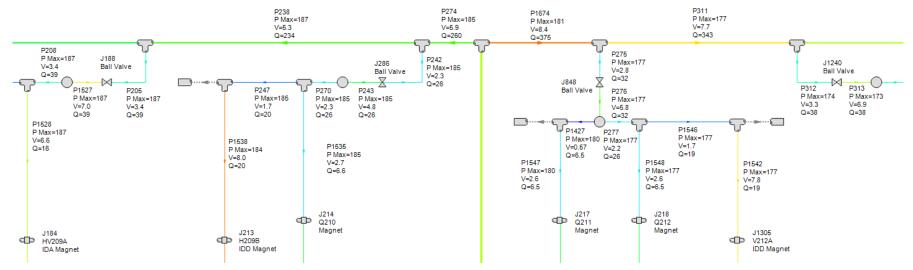
Flow Requirements

- Sum of est. flows: 895 GPM
- With 5% contingency: 940 GPM
 - Horn PS flow may be over-estimated
- Fathom model: 124 BHP
 - 135 HP motor req. at 92% Efficiency
- 150 HP 900 GPM Flowserve Pump
 - 72% efficiency @ 908 GPM
 - 109.3% of BEP
 - 37.4 ft. NPSHA, 24.1 ft NPSHR

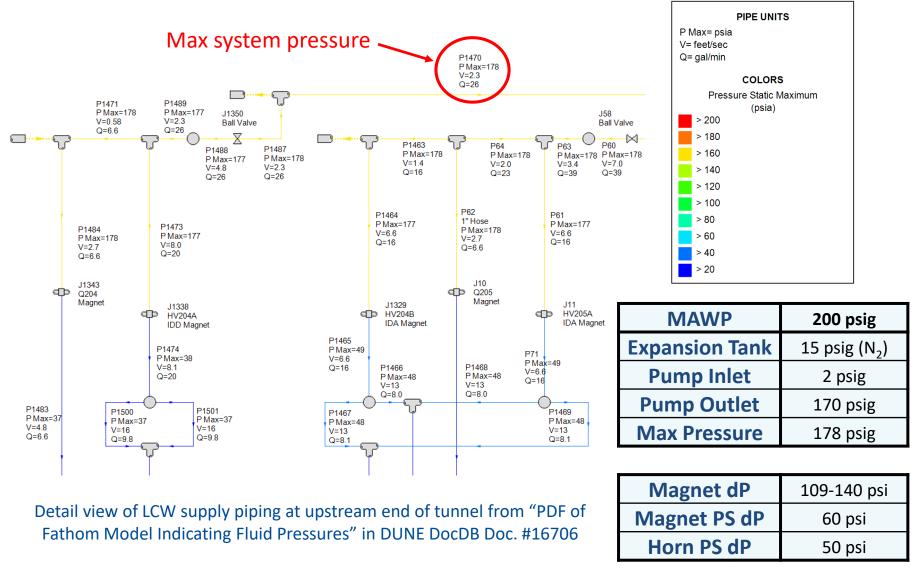

	Flow Required
Magnets	502 GPM
Magnet Power Supplies	128 GPM
Dipole Bus	95 GPM
Horn Power Supplies	100 GPM
Filtration Allowance	50 GPM
RAW Room Fill	20 GPM
5% Contingency	45 GPM
Estimated System Flow	940 GPM

Flow Requirements


- All magnets 100 psi dP or higher
- Using full dipole flows
 - Only 2/3 may be required


Magnet Type	Required flow
QQB - 3Q120 Quad	6 GPM
QQU - 3Q60 Quad	8 GPM
IDA Dipole	15 GPM
IDD Dipole	18 GPM

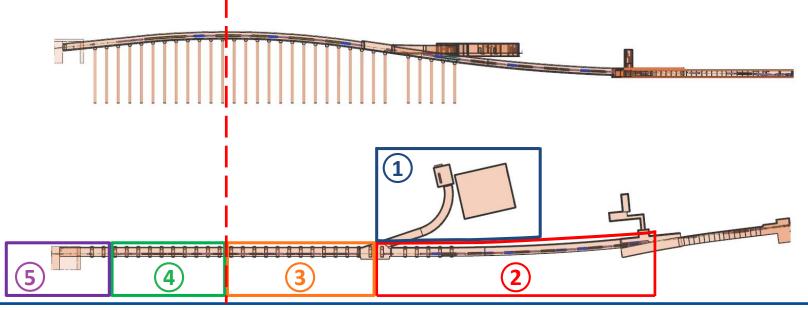
Fluid Velocity


Pump Outlet	5.3 ft/s
Vehicle Access Headers	6.4 ft/s
Upstream Supply Header	8.4 - 3.8 ft/s
Downstream Supply Header	5.9 - 2.3 ft/s
Upstream RR Header	5.9 ft/s
Downstream RR Header	8.4 ft/s

Detail view of LCW supply piping at tunnel alcove from "PDF of Fathom Model Indicating Fluid Velocities" in DUNE DocDB Doc. #16706

System Pressures

Heat Dissipation


- Nominal fluid temp: 95 °F
- Heat exchanger ΔT: 9.1°F
- Magnets ΔT: 1.4°F 11.5°F
- Power supplies ΔT : 0.9°F 9.1°F
- Dipole bus ΔT : 7°F 22.8°F
- Max fluid temp: 118°F
 - Occurs in longest bus run
 - Does not account for air cooling

	Dissipated Power
Magnets	477 kW
Magnet Power Supplies	103 kW
Dipole Bus	193 kW
Horn Power Supplies	60 kW
10% Contingency	83 kW
Pump BkW to LCW	97 kW
Total kW Dissipated:	1,013 kW
Selected HX Size	1,200 kW

Pump Motor Heat Dissipation		
Pump Motor Horsepower:	150	
Pump Motor Power in kW:	111.9	
Pump Motor Efficiency:	90%	
Heat Loss into Room (kW):	11.2	
VFD Heat Dissipation		
Pump Motor VFD Horsepower:	150	
Pump Motor VFD Power in kW:	111.9	
Pump Motor VFD Efficiency:	93%	
Heat Loss into Room (kW):	7.8	
Total Heat Loss into Pump Room:	19 kW	

System Capacities

		Fluid Volume
1	Service Building & Pipes to Tunnel	2,721 Gal.
2	Magnets Upstream of Service Building	622 Gal.
3	Magnets Downstream of Service Building Before Crest	538 Gal.
4	Magnets Downstream of Service Building After Crest	266 Gal.
5	Target Hall and Piping Leading to Target Hall	195 Gal.
Total System Volume:		4,342 Gal.

ASME B31.3/FESHM 5031.1 Compliance

- 8" straight pipe @ 200 psig t_{required} = 0.054"
- 6" curved access corridor pipes @ 200 psig t_{required} = 0.041"
- 8" sch. 10 304/304L pipe $t_{actual} = 0.138$ ", 2.5x thicker than required
- 6" sch. 10 304/304L pipe $t_{actual} = 0.134$ ", 3.2x thicker than required
- Only listed tees, junctions, valves, etc. will be used
 - Class 150 Flanges are sufficient

System Design Requirements

- Meet previously described operational goals
- Require minimal unscheduled interventions
- Meet established lab standards for flow and capacity
- Operate over a range of elevations determined by CF
- Use pond water for cooling and MI LCW for fill
- Conform to ASME B31.3 and FESHM 5031.1

Fluid	Low Conductivity Water
Resistivity	9MΩ·cm or better
Nominal Temperature	95°F
Radioactivity	< 1900 pCi/ml
MAWP	200 psig