Primary Beamline Low Conductivity Water (LCW) Preliminary Design Review

Print Package Review & Major Electrical Requirements

131.01.03.03.02.04.02 Primary Water LCW System 131.01.03.03.02.04.03 Electrical Bus

Noah Curfman October 31, 2019

LBNF-05 Magnet LCW Overall Flow Schematic

LBNF-05 Magnet LCW Overall Flow Schematic

Pump Diagram Heat Exchanger Bypass OVER TEMP STATUS AMP DRAW RUN/STOP HEAT EXCH. 1.2 MW (2) LCW PUMPS 1020 GPM PW (1) RUN 900 GPM LCW 900 GPM, 170 PSI 150 HP MOTORS SETPOINT POSITION Remotely operated 3-way valve Primary LCW pumps

LBNF-05 Magnet LCW Overall Flow Schematic

LBNF – 5 Service Building LCW Piping Arrangement

LBNF – 5 Service Building LCW Piping Arrangement

LBNF – 5 Service Building LCW Piping Arrangement

LBNF Primary Beamline LCW & Bus Flow Schematic

LBNF Primary Beamline LCW & Bus Flow Schematic

LBNF Primary Beamline LCW & Bus Flow Schematic

10.31.19

10

LBNF – 5 Service Building Power Supply P&ID

LBNF – 5 Service Building Power Supply P&ID

DIPOLE BUS One flow control valve per TO BEAMLINE power supply **Bus jumpers between A/B** -1"PIPE H206A 11.8kW PS 16 GPM power supplies are external 1"FLEXHOSE H206B **Griswold Flow Control Valves** 11.8kW PS 1"FLEXHOSE 1"FLEXHOSE 16 GPM 1"FLEXHOSE -1"FLEXHOSE

LBNF – 20 Target Hall Power Supply P&ID

Instrumentation

- Designed based on MI and similar LCW Systems
- Detailed estimates and info found in DUNE DocDB Doc #9955
- Specific component selection delayed to take advantage of emerging technologies

System Redundancy

- Two 150HP Pumps, one running, one hot spare
 - Both pumps VFD controlled
- All major components may be valved out for replacement
 - Filters
 - DI bottles
 - Power supplies
 - Instrumentation
 - Magnet cells
- Recirculation jumpers on all supply/returns

Electrical Requirements

- 2 primary circulation pumps with VFDs
- 3 electrically actuated valves
 - 1 valve in pump room
 - 2 valves in beam enclosure
- 1 three-way valve to control HX flow

Power Requirements

	Quantity	Rated Power	Voltage	Input Phase	I @ Full Load	I @ Stall
Primary Pumps	2	150 HP	480 V	Three	177 A	969.4 A
Recirculation Pump	1	1/2 HP	480 V	Three	2.2 A	Not Listed
Primary Pump VFDs	2	150 HP	480 V	Three	180A	N/A
3 Way Valve Actuator	1	1/12 HP	480 V	Three	0.32 A	1.16 A
Electrically Operated Valves	3	0.5 HP	120 V	Single	Not Listed	3A (est.)
Control Panel	1	N/A	110V	Single	15A	N/A

LBNF Vehicle Access Tunnel LCW Piping & Bus Layout

LBNF Beamline LCW Pipe & Bus Routing

- Provides maximum room for cable trays in alcove
- 2" LCW Downstream return continues into alcove for Q211

VIEW FROM ABOVE WITH CEILING REMOVED

10.31.19

Full Layout Envelope Showing Bus LCW Cable Trays and Headers

Full Layout Envelope Showing Bus LCW Cable Trays and Headers

System Design Requirements

- Meet previously described operational goals
- Require minimal unscheduled interventions
- Meet established lab standards for flow and capacity
- Operate over a range of elevations determined by CF
- Use pond water for cooling and MI LCW for fill
- Conform to ASME B31.3 and FESHM 5031.1

Fluid	Low Conductivity Water		
Resistivity	9MΩ·cm or better		
Nominal Temperature	95°F		
Radioactivity	< 1900 pCi/ml		
MAWP	200 psig		

10.31.19