Summary of Output Record and Factorizable Hadron Rescattering

Kevin McFarland and Jeremy Wolcott from two Sackler-free Institutions 10 January 2020

Roadmap

For each of our charges ("common generator format," "factorization of hadron transport"), we'll remind you:

- **Needs/context**. What problem(s) are we trying to address? (What's the situation?)
- **Requirements.** What were the consensus features a solution would need?
- 'Gotchas'. What are the pitfalls we need to watch out for?
- **Concept sketches.** Our distillation of what might work, based on discussion
- **Next steps.** What are our action items?

"Common record format"

"Common record": needs/context

<u>"Workshop goals" intro (KSM)</u>

- 1. An accord on a common format for all generators ("easy")
 - · Event history: initial state, hard scattering before application of FSI cascade
 - Currently several collaborations (NUISANCE, T2K, NOvA, MINERvA, etc.) develop their own solutions (mostly translators) for this independently.
 - Common descriptions of flux and detector geometry would also be beneficial

Use cases:

- Easier sharing of experiments' custom model adjustments/uncertainties
 → NOvA-T2K experience: much harder than it needs to be
- **"Lightweight generator" handoffs** to GENIE in "onion model" (no re-inventing the wheel in incompatible ways)
- Easier to link to external packages, e.g. LArSoft, to multiple generators
- Handoffs between generators in FSI factorization scheme (see later slides)

On nomenclature:

"Format" includes *both* "event storage grammar" (including in-memory representation as C++ data structures) and "persistency" (to/from in-memory representation)

"Common record": requirements

Non-negotiable event-wise information:

- "Snapshots" of event particles at various stages (initial state, after hard scatter, steps in hadron transport): x^μ, p^μ in lab frame, lineage, status code
- Hard scatter info (but see pitfalls next slide): reaction type, sub-mode (resonance ID?), ...
- Interaction vertex location within nucleus
- Decay, hadronization info (n.b., clear definition of this will need work)
- Storage for neutrino progenitor(s) info (flux): see dk2nu, J-PARC ntuples
- Storage for generator-specific info (i.e., for reweighting)

Essential "metadata":

- Nuclear potential assumed (global? local, and if so, some details? etc.)
- Generator-specific model configurations

Guidance: re-use wider HEP community tools where possible (HepMC?)

Should support e, π , **p** "probes" in addition to v by design rather than by accident. (Does that add more requirements?)

"Common record": 'Gotchas'

Event and model identifications do not map isomorphically from one generator to another:

- Different primary process partitions
 (e.g.: GENIE "DIS" ≠ NEUT "DIS" ≠ GiBUU "DIS" ≠ NuWro "DIS")
- Primary processes support different 'options' (e.g., how many resonances, which ones?)
- Choices of working frame (lab frame? struck nucleon rest frame? etc.) may differ between generators → choose stored variables carefully; for a subset of critical outputs, will need to agree upon a standard

 \rightarrow probably **necessitates a community-supported "glossary"** of what every possible entry in the record means as part of the common format (!)

How to record nontrivial interactions between model stages?

 \rightarrow e.g., hadronization \oplus FSI \oplus unstable particle decays (see discussion later) (what do we do about events that were rejected internally between 'stages'?)

"Common record": concept sketches

Possible paths forward:

- 1. **Translators** (clearly the first step)
 - NUISANCE has already done the input portion of this in order to create its native format. What can we learn/borrow?
 - Output to the "common" format will be a green-field development

2. Generators write directly to this format

- Probably not *hard*, but requires generator buy-in
- More robust in the long run (esp. if unit tests, etc. included directly)
- Generators could reasonable write both a native and a common format because storage for this stage is not a driver for computing needs

"Common Record": next steps

1. Design a proposal

- Convene a small group to build it. Likely members:
 - Generator representatives
 - Existing storage format expert(s) (HepMC, other alternatives?)
 - LArSoft representative ("we will switch if a standard format emerges")
 - NUISANCE representative
- Invite folks from this workshop (and other interested parties) to comment
- Iterate as necessary
- 2. Develop (at least) one representative translator
- Develop (at least) one representative "consumer" (migrate NUISANCE to use the common format? Or have one generator use this as part of experimenting w/ "factorized FSI"?)
- 4. Test
- 5. Report on lessons learned, iterate as needed
- 6. Implement full solution

Factorization of hadron transport from hard scattering

Factr8n. had. xport: needs/context

"Workshop goals" intro (KSM)

- 2. Support FSI in a "second stage", separate from hard scattering, in generators ("doable")
 - Would allow cross-fertilization of FSI models.
 - At a minimum, easier to compare results.
 - Could accelerate adaptation of best practices/models into different generators.
 - There exist complications: consistency with initial state nuclear model, for example.

Use cases:

- "Bisection" of which parts of model correlate with observable behaviors in data (e.g.: G. Garvey's request for "no FSI" GiBUU; MINERvA 3D QE-like xsecs)
- Quantify **consequences of violating internal consistency** (see pitfalls, later slide)
- Quick studies of "lightweight generator" primary xsec models w/ plausible hadron transport

Factr8n. had. xport: requirements

Generator support:

- Need to be able to configure and run in such a mode, taking a generator record as input
- Need to accept 'intermediate' particle record (particles) as input (without requiring they came from internally simulated neutrino interaction)
 → already exists in at least one generator (GiBUU); unsure about others
 → will need public 'recipes' for doing this
- Stripping of first generator's transport stages should happen *before* output

Intermediate record format:

Essential that info on nuclear model assumptions recorded
 → Can't *enforce* consistency but can make it easy to *verify* (c.f.: Python mantra "bad behavior should be discouraged but not banned")

Factr8n. had. xport: pitfalls

• This approach inherently supports inconsistencies

- In almost all applications one could run for this today, nuclear potential will not be consistently treated in this factorization.
- Nuclear model used in hard scattering can be inconsistent (potential, density) with nuclear model assumed in the hadron reinteraction.
- Pion production and absorption happen via same diagram: if potentials are not the same in production and hadron transport, unphysical "step" is introduced
 - Violates time reversal symmetry, as Ulrich pointed out. Wrong, but consequences unclear

• Nontrivial coupling to hadronization and unstable particle decays

• Dedicated slide, next

• Workflow maintenance

Even though all pieces live "inside" generators themselves, this is unusual workflow.

- Who's responsible for testing, maintaining workflow as generators evolve?
- Where does documentation of how to run all the steps live?

Coupling of decay and hadronization to reinteraction

Potential problems

- What happens if a particle is decayed after it undergoes a hadron reinteraction? Would have to be redecayed by the secondary generator.
- For hadronization, would the initial generator provide the formation zone model? If so, the hadrons are not produced at the point of the neutrino interaction.
- What if kinematics after FSI cause the event to "fail" generation? Need to keep the orphaned record because a second stage generator might resurrect it.

Need to work through the use cases and make a concrete proposal.

It could conceivably require some agreements on a standard for these items, or additions to the common record.

Factr8n. had. xport: concept sketches

Workflow options

Factr8n. had. xport: Next steps

1. Design a proposal

- Convene a small group to build it. Likely members:
 - Generator representatives
 - Experimental customers
 - "Lightweight generator" candidate representative?
- Invite folks from this workshop (and other interested parties) to comment
- Iterate as necessary

2. Implement "first stage" and "second stage" in representative generators.

- "First stage" *could* be done in a translator as a stopgap, despite desire for stripping to be done internally in generator
- "Second stage": test driving using current GiBUU machinery is probably enough
- 3. Test
- 4. Report on lessons learned
- 5. Iterate as needed
- 6. Implement full solution