
Input/Output/Flux/Geometry/FSI in NuWro

Cezary Juszczak

Contents

1. Give an overview of your flux/geometry driver functionality
and input formats

2. Are there any structural problems that would be needed to
solved to use a common flux/geometry driver

3. Review the output formats of your generator

4. Are ISI and FSI done at separate stages in your generator.
If not, why not? How difficult, mechanically, would this
factorization be?

NuWro input format overview

nuwro [-i <input>] [-o <output>] [[-p "<param line>"]...]

I <input> is input text file (default is params.txt)
I <output> is output root file (default is eventsout.root)
I every <param line> is “appended” to <input> file

Input file lines and <param line> have the same syntax:

This is a comment line

@this_file_is_included.txt

param1 = value // sigle value parameter

Multi value paramter:

param2 = val1 val2 val3 ...

Multi line parameter:

param3 = line 1

param3 += line 2

...

param3 += line n

Beam types in NuWro (beam type choices)
Beams of types 0, 1, 5, and 6 model fluxes homogeneous in
space, with all particles moving in the same direction.

Beam types 2 and 3 are suitable for near detector (eg. ND280).
They model fluxes inhomogeneous in space and momentum.

I beam_type = 0 - single flavor beam
I beam_type = 1 - weighted mixture of beams of type 0
I beam_type = 2 - individual neutrinos read from files

created by beam simulation software and placed in
beam_folder. Implemented for ND280.

I beam_type = 3 - inhomogeneous in space and momentum
beam based on multidimensional histograms.

I beam_type = 4 - build histograms for use with beam type
3 from input files of beam type 2 (works only for ND280).

I beam_type = 5 - same as 0 but energy profile read from a
THist object saved in root file

I beam_type = 6 - same as 1 but energy profiles read from
THist objects saved in root files

beam type = 0 // single flavor beam
Single favor unidirectional and spatially homogeneous beam.

I beam type = 0 // Beam with a single neutrino flavor

I beam_particle = 14 // Neutrino pdg code

I beam_direction = 0 0 1 // Beam direction (z-axis)

I Fixed energy beam:
beam_energy = 1000 // E = 1000 MeV

I Uniform energy distribution:
beam_energy = 1000 2000 // 1000 MeV < E < 2000 MeV

I Nonuniform energy profile. Encoded in list of numbers:
Emin Emax and list of bin heights (in arbitrary units) e.g.

beam_energy = 1000 2600 1 2 3 4 2 3 1 1

 0

 1

 2

 3

 4

 5

 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

B
e
a
m

 i
n
te

n
si

ty
 [

a
rb

 u
n
it

s]

Beam Energy [MeV]

beam type = 1 // Mixture of single flavor beams
Intended for mixed flavor beams. Parameters are:
I beam type = 1 // Weighted mixture of single flavor beams
I beam_direction = 0 0 1 // Beam direction for all flavors
I beam_content // parameter has many lines.

Each line of beam_content contains three “parameters”:
beam_particle, percentage, and energy_profile e.g.:

beam_content = -14 100% 0 7600 2.157 ...

beam_content += 14 18.5191% 0 7600 2.298 5.903

beam_content += -12 0.432435% 0 7600 1.233 4.476...

beam_content += 12 0.229053% 0 7600 6.084 18.47...

The percentages do not need to add up to 100%, since only
relative values are important.

The RHS of the % sign has exactly the same meaning as
beam_energy parameter for beams of type 0.

The += operator is necessary to append subsequent lines to
the parameter value.

beam type = 2 // use the flux from a MC output

I Inhomogeneous in space and momentum

I Suitable for use with near detector geometry (e.g. ND280)

I Individual weighted neutrinos read from MC files placed in
a folder. Parameters:

I beam_type = 2 // Must be set to use this mode

I beam_folder = ~/flux/ // folder with files to be read

I beam_offset = 0 0 0 // center of coordinates of the
beam expressed in the coordinates of the detector

I beam_file_first = 1 - number of file to start with

I beam_file_limit - number of files to be read (0 no limit)

I beam_weighted - generate weighted (1) or unweighted (0 -
default) neutrinos.

I File format and POT calculation is specific to T2K/ND280

On NuWro startup neutrinos are read from files into memory.
Neutrinos not hitting the detector are discarded but accounted
for.

beam type = 3 // beam based on Multi Dimensional
Histogram

I The beam of type 2 has the disadvantage that it can run
out of neutrinos, and start to loop thus creating many
events with exactly the same neutrinos.

I So it is plausible to make histogram based on the MC
simulation files and use the histogram instead of the
original list of neutrinos from simulations.

I It is done by running NuWro with the parameter
beam_type = 4 // create beam histogram

and the parameter beam_folder = the path to the beam
files that should be included in the histogram.

I After the histogram is created (the histout.txt exists) it
is enough to set
beam_type = 3 // use histogram based beam.
to use it in simulations.

beam type = 5 // Single flavor using root histogram

This option was created by Patrick Stowell / Luke Pickering.
It has the same functionality as beam_type=0 except the energy
profile histogram is not inlined but read from a root file.
Parameters are:

I beam_type = 5 // Single flavor from root histogram

I beam_particle = 14 // neutrino PDG code

I beam_direction = 0 0 1 // along z-axis

I beam_inputroot = <file> // name of the root file

I beam_inputroot_flux = <name> // name of the TH1D

histogram object inside the root file

beam type = 6 // Multi favor using root histograms

This has the same functionality as beam_type=1 except the
histograms are read from a root file, and must have the same
scale. Probability of choosing specific neutrino flavor is
proportional to the total of the corresponding histogram.
Parameters are the following:

I beam_type = 6 // Multi flavor beam from root histograms

I beam_direction = 0 0 1 // common to all flavors

I beam_inputroot = <file> // name of the root file

I beam_inputroot_nue // histogram name for νe

I beam_inputroot_nueb // histogram name for ν̄e

I beam_inputroot_numu // histogram name for νµ

I beam_inputroot_numub // histogram name for ν̄µ

I beam_inputroot_nutau // histogram name for ντ

I beam_inputroot_nutaub // histogram name for ντ

Target types in nuwro

I target_type = 0 // Single isotope

I target_type = 1 // Mixture of isotopes

I target_type = 2 // Detector geometry

Detector geometry overview

Detector geometry is read from the root file (e.g. ND280.root
or Minerva.root). It can be used with detector specific beam.
The input parameters are:

I geo_file - name of the file containing root geometry object

I geo_name - name of the geometry object (TGeometry)

I geo_volume - name of the top volume

I geo_o = xo yo zo of the center of region of interest

I geo_d = dx dy dz (half dimensions of the region) The
box of interest is

(xo − dx, xo + dx)× (yo − dy, yo + dy)× (zo − dz, zo + dz)

I The only input (not contained in params.txt) is the root
file given by geo_name.

The ND280 geometry can be replaced by any other detector
geometry without any changes to the NuWro code.

Detector geometry example ND280
Contents of the file: data/ND280_975.txt

ND280 geometry

target_type = 2 // use detector geometry

geo_file = target/ND280_v9r7p5.root

geo_name = ND280Geometry_v9r7p5

geo_o = 0 0 0 // the center of the box of interest

geo_d = 2000 2000 5000 // its half dimensions

nucleus_target = 2

Detector geometry example: Minerva

Contents of the file: data/Minerva.txt

#Minerva geometry

target_type = 2 // use detector geometry

geo_file = target/Minerva.root

geo_name = Geometry

geo_o = 0 0 750 // center the box of interest

geo_d = 300 300 300 // its half dimensions

nucleus_target=2

The algorithm

A

B

ν

P

Discard (but calculate %) all ν not crossing the box of interest.
Then repeat:

1. Get ν from the beam.

2. Find entry/exit points A/B and calculate l = length of AB

3. Take random P ∈ AB
4. Calculate d = density of matter at P .

5. Take random x ∈ [0, dmax · lmax] and go to 1. if x > d · l.
6. Get isotope A according its mass share in matter at P .

7. Enter properties of A (p, n, kF , Eb) in params structure.

8. Simulate event for isotope A and decrease its weight by %
of discarded neutrinos.

The algorithm (for spatially uniform beams)
For spatially uniform beams the algorithm is even simpler

P

Repeat:

1. Get ν from the beam.

2. Take random P inside the box of interest.

3. Calculate d = density of matter at P .

4. Take random x ∈ [0, dmax] and go to 1. if x > d.

5. Get isotope A according its mass share in matter at P .

6. Enter properties of A (p, n, kF , Eb) in params structure.

7. Simulate event for isotope A.

Nuwro output files
During its run NuWro creates the following files:

I eventsout.root - file with the event objects

I eventsout.root.par - file with actual parameters used in
the simulation. To repeat simulation type:

nuwro -i eventsout.root.par

I totals.txt - text file with effective total cross sections of
all active channels

I eventsout.root.txt - effective total cross section, its
statistic error, efficiency, and number of generator events
for each active channel.

I random_seed - saved random seed. Mainly for debugging.
Enables rerunning nuwro with the exactly the same results.

I q0.txt, q2.txt, qv.txt, T.txt - differential cross sections
calculated during nuwro run. Used by some developers, for
quick comparisons when new models are implemented.

The file with events (by default eventsout.root) contains all
information useful for the analysis.

Structure of the eventsout.root file
The eventsout.root - content the following objects:

I xsections - TH1D histogram storing total cross sections of
enabled channels.

I treeout - a TTree with a single branch e of events.
the event contains:
I params - input parameters
I flags - event type flags
I in, temp, out, post, all - lists of particles
I weight, dyn, density, pr, pn, ... - scalars, r - 3D vector
I Methods: q2(), nu(), N0(), q(), q0(), qv(), q2(), s(), costheta(), E(),

charge(in, W(), n(), f(), nof(pdg), fof(pdg), przod(), tyl(),

number of nucleon elastic(), number of nucleon ce(), number of nucleon spp(),

number of nucleon dpp(), number of pion elastic(), number of pion ce(),

number of pion spp(), number of pion dpp(), number of pion tpp(),

number of pion abs(), number of pion no interactions(),

number of nucleon no interactions(), absorption position(), number of jailed(),

number of escape(), number of interactions(), number of particles() ...

I Object oriented approach (including event and particle

methods) simplifies the analysis

Structure of event (data)
The eventsout.root file contains the treeout tree with
branch e of events with the following structure:
I params - actual values of all input parameters:

I number_of_events -
I number_of_test_events -
I ...

I flags - booleans flags useful for event filtering
I qel, res, dis, coh, mec, hip - test if interaction was:

(quasi) elastic, resontant, deep inelastic, coherent, meson
exchange current, or hiperon production, respectively

I nc , cc - true if neutral/charged current event
I anty - true if antineutrino
I res_delta - true if RES pion comes from Delta decay

I in - list of particles entering primary vertex:
in[0] - neutrino, in[1] - nucleon

I temp - particles from Pythia6 fragmentation (DIS only)
I out - particles leaving the primary vertex, out[0] - lepton.
I post - all particles (after FSI) which left nucleus
I all - all above + intermediate FSI particles

Structure of event (data) - continued
I weight - cross section (in cm2) contains:

- event scross section for files with weighted events,
- total cross section for unweighted events (default)

I dyn - primary vertex dynamics channel number.
I r - position of the event inside the detector
I density - density of matter at interaction point
I pr - number of protons in the residual nucleus
I nr - number of neutrons in the residual nucleus
I r_distance - distance from nucleus center of absorption

point (if happened)
I res_jacobian- Jacobian calculated in RES for random

kinematics (for reweighting)
I res_angrew - store xsec factor coming from angular

distribution (for Delta)
I res_nu - store neutrino for reweighting
I res_q - store q for reweighting
I ...

Structure of event (methods)

The event methods useful in the output file analysis:
nu(), N0(), q(), q0(), qv(), q2(), s(), costheta(), E(), charge(), W(), n(), f(), nof(pdg),

fof(pdg), przod(), tyl(), number of nucleon elastic(), number of nucleon ce(),

number of nucleon spp(), number of nucleon dpp(), number of pion elastic(), number of pion ce(),

number of pion spp(), number of pion dpp(), number of pion tpp(), number of pion abs(),

number of pion no interactions(), number of nucleon no interactions(), absorption position(),

number of jailed(), number of escape(), number of interactions(), number of particles(),

nuc kin en(), num part thr(in, num part thr withincosine(in, num part two thr withincosine(in,

proton cosine(), proton transp mom(), proton transp mom2(), proton transp(),

proton pair number1(), proton pair number2(), part max mom(), part sec mom(), vert act(), Erec(),

Q2rec(), proton recoil(), neutron recoil(), photon recoil(), meson recoil without masses(),

meson recoil with masses(), lepton recoil(), total recoil with masses(),

total recoil without masses(), neutral kaon recoil(), proton max mom(), particle max mom(in,

particle max mom withincosine(), particle max mom withincosine withinmomentum(), total hadr post()

They event and particle methods are available from both
native C++ scripts and root scripts.

Structure of particle (data)

In NuWro there is no distinction between the runtime particle

and serialized particle.

Each particle has the following data:

I x,y,z,t - its momentum and energy (px, py, pz, E)

I _mass - its mass

I r - last position inside the nucleus (rx, ry, rz)

I pdg - its PDG code

I ks, origin - used only by Pythia6 routine

I travelled - distance from creation

I id - index in the vector all

I mother - index of mother in the vector all

I endproc - id of the interaction at the track end

I his fermi - its Fermi energy (in the LFG model)

I primary - true if it comes directly from primary vertex

Structure of particle (methods)
Each particle has the following ‘reader’ methods:

I E(), energy() - energy

I Ek() - kinetic energy

I m(), mass() - mass

I mass2 () - mass squared

I charge() - charge

I p() - momentum as a 3-vector

I p4() - four-momentum

I momentum() - value of the momentum (number)

I momentum2() - momentum squared

I v() - velocity as a 3-vector

I v2() - velocity squared

I lepton(), pion(), nucleon(), proton(), neutron() -
test if particle is: lepton, pion, nucleon, proton, neutron.

I ...

Using particle and event methods

Many interesting histograms may be obtained in just one line:

I in[0].E() - Energy of incoming neutrino

I in[0].r.z - third coordinate of the primary vertex

I out[1].momentum() - momentum of outgoing lepton

I post.z - z-coordinate of momentum of outgoing particles

I r.x, r.y - x and y coordinates of the event inside the
detector

I @temp.size() - number of Pythia6 particles

I @post.size() - number of particles leaving the nucleus

I post.Ek() - kinetic energies of particles leaving the nucleus

I number_of_interactions() - number of FSI interactions

I number_of_pions() - number outgoing pions.

Output file converters

Currently there exist three file format converters:

I nuwro2neut

I nuwro2nuance

I nuwro2rootracker

More can be readily created, but maintenance of the code could
be a problem.

ISI/FSI separation

I Yes, indeed FSI is done separately after ISI is finished

I However, for some channels FSI is omitted (COH, MEC)

I For QEL events with Spectral Function formalism the
effective FSI routine is used instead of the default one

Summary
I Input:

I Plain text input - modularity provided by @ include sign.
I The same grammar in files and command line arguments.
I Where needed the OO input from root files is used.

I Output:
I The main output file contains TTree of event objects.
I Inclusion of event and partile methods in output file

simplifies the analysis.
I Event methods could be standardized across generators.

I Flux:
I The far detector flux format is easy to standardize
I The near detector flux driver depends on the structure of

the detector specific flux files

I Geometry:
I The geometry driver and algorithm are easily portable

I FSI:
I The FSI part is mostly independent of the rest of NuWro.
I It can be used as a standalone application.

