
Input from
Generators - GENIE

Generator Tools Workshop - Fermilab - Jan 8th, 2020

Costas Andreopoulos

Questions by workshop organisers
• Give an overview of your flux/geometry driver functionality

and input formats

• Are there any structural problems that would be needed to
solved to use a common flux/geometry driver

• Review the output formats of your generator

• Are ISI and FSI done at separate stages in your generator.

• If not, why not?

• How difficult, mechanically, would this factorization be?

• Give an overview of your flux/geometry driver functionality
and input formats

General scheme

GENIE flux and
geometry drivers

GENIE flux and geometry APIs
(minimal set of instructions)

GENIE
event

generation
framework

External
flux and geometry

data files

GENIE
physics
modules

Specialised GENIE event generation app

configures configures

GENIE flux and geom APIs

GENIE flux drivers
❖ A number of flux drivers are included in public releases

❖ Barr - Gaisser - Lipari - Robbins - Stanev (BGLRS) atm. flux driver

❖ Ferrari - Sala - Battistoni - Montaruli (FLUKA) atm. flux driver

❖ Honda - Sajjad Athar - Kajita - Kasahara - Midorikawa (HAKKM) atm. flux driver

❖ Driver for integration into GENIE of the outputs of a detailed J-PARC neutrino beam-line simulation
[JNUBEAM].

❖ Driver for integration into GENIE of the outputs of a detailed NuMI neutrino beam-line simulation
[GNuMI].

❖ A generalised driver for a simple, “cylindrical”, multi-neutrino flavour flux where the direction, size and
lateral profile are customisable and the energy distribution of each flavour is described by a 1-D histogram

❖ A generalised driver for a multi-neutrino flavour flux represented as an n-tuple (a series of neutrino flux
rays) that can be used when there are substantial correlations between the neutrino position, energy,
direction

❖ Severals other tools in private versions and / or in user codes

GENIE geometry drivers
❖ Two geometry drivers are included in public releases

❖ ROOT geometry driver - the main workhorse

❖ TGeoManager

❖ GEANT geometries can be exported in this format

❖ “Point geometry” driver

❖ Allows handling simple target mixtures (list of targets each with its corresponding
weight fraction) with no spatial information in the exact same framework

Less diversity - but if there was any other different geometry description used by the
community we would support it with a dedicated geometry driver

Building on top of the flux and geometry APIs
• The flux and geometry APIs provide a protocol for obtaining the information

required for the purpose of event generation

Flux description Detector description

• That protocol specifies a very minimal set of operations - All we need is:

• Throw “flux rays” (flavour, momentum and position 4-vectors) from input p.d.f.s

• Navigate through the geometry and compute density-weighted path-lengths for each isotope

• A much larger set of operations is required for initialising, configuring , manipulating different types
of fluxes - not part of the API: Specific to different types of fluxes and exploited by different types of
event generation apps, specialised for different tasks.

Using flux and geo drivers in a specialised event generation app

• A much larger set of operations is required for initialising, configuring , manipulating
different types of fluxes - not part of the API

• It is worth considering briefly a couple of examples

FLUKA:/some/path/sdave_numu07.dat[14],/some/path/sdave_nue07.dat[12],…

/some/path/duneFD.root

1000080160[0.8879],1000010010[0.1121]

or

Using flux and geo drivers in a specialised event generation app

• A much larger set of operations is required for initialising, configuring , manipulating
different types of fluxes - not part of the API

• It is worth considering briefly a couple of examples
Enable/disable volumes,
eg “-Cryostat -Rock”

plus, ability to define and generate
events in arbitrary fiducial volumes
that do not correspond to any actual
geometry volume

Rotation: Topocentric horizontal -> user-defined coordinate system

Using flux and geo drivers in a specialised event generation app

❖ Definition of flux ray generation
surface for atmospheric neutrinos

❖ Similarly, all flux drivers have customisation options, or use conventions, specific to
the given type of flux

Customisable radii

• A much larger set of operations is required for initialising, configuring , manipulating
different types of fluxes - not part of the API

• It is worth considering briefly a couple of examples

• Are there any structural problems that would be needed to
solved to use a common flux/geometry driver?

❖ If only I was making choices on the amount of information provided here …

❖ There is no concrete proposal / specification of how that system would look like

❖ Can not comment on whether there would be technical limitations

❖ For instance, if the new system was art-based (possible, given the strong FNAL focus
of this workshop), we wouldn’t touch it - No need for us to impose new requirements
to our many non-FNAL user communities.

❖ Even if there was no technical limitation, it is very hard to see why we would want to use
an unknown new system to replace of our existing, native, proven, well-developed and
well-known tools that already underpin the GENIE interfaces to all experiments!!

❖ Almost certainly, options #2a and #2b (outlined in my previous talk) define the context in
which we could engage in joint developments

• Review the output formats of your generator

Output formats
The native GENIE event format is called GHEP - a suitably customised STDHEP-like format

A GHepRecord is a TClonesArray of GHepParticles

• It is a special kind of TClonesArray, where entries are automatically shuffled to make sure the
daughter list of any particle in the event occupies a consecutive set of slots.

• In addition to lists of particles it also includes information with event-wide scope
• Event vertex in detector coordinate system, event weight, error flags, corresponding x-section

• It also includes redundant information in a hierarchical set of objects (more later)

GHEP-specifics deeply ingrained in all GENIE generation codes

❖ Each event generator includes a list of event generation
modules

❖ Each module “visits” and operates on the current event
(Visitor design pattern)

❖ Achieves a uniform interface for a very diverse set of
physics modules (kinematic selection, FSI, hadronization,
particle decays, Fermi motion, Pauli blocking, …)

❖

Redundant information - Interaction
❖ The GHEP event record specifies all information about an event

❖ It is the main input to and output of GENIE MC event generators / event generation modules

❖ As part of MC event generation we also do calculations (e.g. cross-section or form factor calculations)

❖ For these calculations there are several use cases that do not involve MC generation

❖ Typically, they require a very small subset of the information stored in the event

❖ We need to be able to run these calculations even when we don’t have a full event

This info is stored in a hierarchical set of objects
(Interaction and other objects there in)

Whereas a GHEP event object is passed to
all GENIE MC generation modules,

an Interaction object is passed to
 nearly all GENIE calculations

An Interaction object is attached to each event

Redundant information - Interaction

Interaction * ccqe = Interaction::QELCC(kPdgTgtO16,kPdgNeutron,kPdgNuMu); // numu + (n)C12
ccqe->InitStatePtr()->SetProbeE(E); // in LAB-frame (E,0,0,E)
ccqe->KinePtr()->SetQ2(Q2);

RunningThreadInfo * reinfo = RunningThreadInfo::Instance();
const EventGeneratorI * evg = rtinfo->RunningThread();
XSecAlgorithmI * xsec_model = evg->CrossSectionAlg();

// print dsig/dQ2
cout << xsec_model->XSec(interaction, kPSQ2fE) / (1E-38 * units:cm2) << endl;

So, for example, if a QE generator wants to take the currently configured QE x-section model and
evaluate a x-section value, it does something like

This is event record feature is deeply ingrained in GENIE code

Care required to make sure the GHEP record and the attached Interaction remain in sync

Benefits (simple interface to most calculations, decoupling from event generation) is
worth the trouble

GHEP event record - example 1
Particles include more info than shown here

GHEP event record - example 1
Printout of associated / attached Interaction summary of previous event

GHEP event record - example 2
A non-neutrino event

Conversions to other formats
❖ GENIE includes an app (gntpc) that can convert GHEP events to alternative formats:

❖ GST: flat n-tuple with tonnes of info for each event

❖ GXML: A custom XML-based event format

❖ GHEP_MOCK_DATA: GHEP formatted event where all info other than final state particles is stripped out

❖ NUANCE_TRACKER: The original tracker format (used by NUANCE)

❖ T2K_TRACKER: A variation of the tracker format with tweaks required for GENIE/SK interface

❖ ROOTRACKER: A bare-ROOT STDHEP/GHEP-like event record

❖ ROOTRACKER_MOCK_DATA

❖ T2K_ROOTRACKER: A ROOTRACKER event format + JNUBEAM flux pass-through info

❖ NUMI_ROOTRACKER: A ROOTRACKER event format + GNUMI flux pass-through info

❖ Any other can be added

Flux pass-through information

Output GENIE GHEP event tree
without flux metadata

Output GENIE GHEP event tree
With flux metadata

Extra tree branch
Event index links a

GHEP leaf with
flux metadata leaf

Stored flux
metadata object

specific to
input flux driver

• Are ISI and FSI done at separate stages in your generator.

• If not, why not?

• How difficult, mechanically, would this factorization be?

Event generation factorisation in GENIE

Traditionally, GENIE has been using the
generation factorisation shown on the left

FSI (intranuclear hadron transport) code
is a separate step

This structure has been preserved for all
current GENIE comprehensive model
configurations, and it the same for all 4
GENIE FSI models:
• INTRANUKE / hA
• INTRANUKE / hN
• INCL
• GEANT

Event generation factorisation in GENIE
The primary hadronic system is clearly visible / separate from the final state (post-FSI)

hadronic system and it is preserved in the event record

Caveats with hard-scattering / FSI separation
❖ Not a true physics factorisation

❖ Nuclear environment permeates all aspects of the event

❖ Code structure for description of nuclear environment a next major upgrade in GENIE

❖ This new structure should elevate the fact that this environment is common throughout the event

❖ Probably will alter some model interfaces and may enforce pre/post-FSI nuclear model consistency

❖ May limit scope for a combinatoric explosion of hard scattering / FSI models

❖ Pre-FSI simulation choices carefully matched to FSI capabilities

❖ Example: FSI code doesn’t handle propagation of ∆’s, they are decayed before the FSI stage that handles its
decay products

❖ Example: Binding energy / bringing nucleons on the mass shell

❖ In medium effects to hadronization

❖ Future upgrades will blur the boundary between the last 2 steps

