NEUT

Yoshinari Hayato (Kamioka, ICRR, The Univ. of Tokyo) for the NEUT developers

- 1. Overview of flux/geometry driver functionalities
- 2. Review of the output format
- 3. Simulation of ISI and FSI

Available Flux/Geometry drivers

Simple flux driver

- 1D flux histogram (root TH1)
- Single nucleus (with Hydrogen)
- Uniformly distributed vertex in specified radius (2-dim.)
- Fixed direction specified by the configuration (card) file

Super-Kamiokande Atmospheric neutrino flux driver

- Not included in the NEUT distribution (SK library)
- Honda fluxes
 - (also supports old Gaisser, Lee, Naumov fluxes)
- H₂O target
- Uniformly distributed vertex in the SK detector
- Neutrino direction is determined by the input flux
 - 3D for Honda fluxes, 2D (zenith only) for the others.

Available Flux/Geometry drivers

T2K-SK flux driver

- T2K neutrino vector (vector flux file) or 1D histogram
- Single nucleus (with Hydrogen)
- Uniformly distributed vertex in the SK detector
- Fixed direction (T2K beam direction, hard coded.)

T2K-ND280 (off-axis detectors) flux driver

- T2K neutrino vector (vector flux file)
 - 4-vector and position at the "incident" plane.
- ROOT Geometry (TGeoManager)
 - Target nucleus is taken from the geometry.
- Direction is given by the neutrino vector (flux)

Available Flux/Geometry drivers

T2K neutrino vector

Output neutrino flux vector file from jnubeam (T2K beam simulation program).

This contains the following variables:

- Neutrino energy (E_{ν}) ,
- Neutrino direction (dx, dy, dz),
- Neutrino position (x, y) at the "incident plane"

in the detector coordinate,

- Weighting factor to give **flux/Detector** with 1E21, and
- Many other variables (from the beam simulation).

T2K-ND280 flux / geometry driver

Read neutrino vector information

Calculate the path lengths of each volume and material, like L_{Iron}, L_{scintillator1} etc...

Calculate the interaction probabilities in each volume (material), like

$$P_{\text{Iron}} = L_{\text{Iron}} \times \sigma_{\text{Iron}}(E_{\nu})$$

$$P_{\text{scintillator1}} = L_{\text{scintillator1}} \times \sigma_{\text{scintillator}}(E_{\nu})$$

$$P_{\text{total}} = P_{\text{Iron}} + P_{\text{scintillator1}} + P_{\text{scintillator2}} + \dots$$

- Store all the probabilities for each vector.
- Use stored information to generate events.

2) NEUT output data format

Output data formats

- 1) CERNLIB ZEBRA based bank (ZBS)
- 2) ROOT class
- 3) ROOT tree (T2K ND280 specific RooTracker format)
- 4) ROOT flat tree (similar to the ZBS format)

 ~ 3) stores complete information including the particle tracking information in the nucleus and the physics (model) information and parameters to generate the event, i.e. re-weightable.
 4) does not keep the detailed tracking information.

2) NEUT output data format

NEUT output data structure

N_{part} # of particles stored in the particle stack
 N_{primary} # of particles from initial (primary) neutrino interaction

- Incident particles neutrino nucleon(s)
 - (or nucleus for coherent π prod.)
- Particles produced by the initial (primary) neutrino interactions
- Secondary particles Particles produced by the hadron secondary interactions
- De-excitation γ and nucleons

2) NEUT output data format

NEUT output data format

Particle stack
Particle #1
Particle #2
:
:
Particle #N _{primary}
Particle #N _{primary} +1
Particle #N _{primary} +2
:
:
Particle #N _{part} =N _{primary} +N _{FSI}

	Particle information
	Particle ID (PDG code)
	Mass
	4-momentum
	Status (Escaped from the nucleus =1 or not =0)
	 Status flag(detail) 0: Escaped from the nucleus 1: Decayed to the other particle 2: Escaped from the detector 3: Absorbed 4: Charge exchanged 5: Pauli blocked 6: N/A 7: Produced particles 8: Inelastically scattered
	Initial vertex ID (in the detector)
	Final vertex ID (in the detector)
	Parent particle index #

2) Output data format

 ν_{μ} +

Example of output data

This particle is not simulated.

Index	Particle	Status	Parent particle ID	Status (detail)
#1	Incident $ u_{\mu}$	0	0	-1
#2	Incident Proton	0	0	-1
#3	Outgoing μ^-	1	1	0
#4	Outgoing Proton	0	2	7 (produced particles)
#5	Outgoing π^+	0	2	4 (charge exchange)
#6	Re-scattered π^0	1	5	0
#7	Re-scattered proton	1	4	0
#8	Re-scattered proton	1	4	0
#9	De-excitation gamma	1	2	0

3) Initial state interactions and final state interactions

Initial and final state interaction simulation parts are separated. In the library, not only

neutrino-nucleus interaction simulation program but pion-nucleus scattering simulation program and

nucleon-nucleus scattering simulation program are included.

4) NEUT specific issues (difficulties for the users)

- NEUT uses gfortran.
- NEUT extensively uses CERNLIB.
 CERNLIB contains old versions of PYTHIA and JETSET. Makes it difficult for users to compile. Symbols may conflict with the other libraries.

