
NEUT

Yoshinari Hayato (Kamioka, ICRR, The Univ. of Tokyo)
for the NEUT developers

1. Overview of flux/geometry driver functionalities
2. Review of the output format
3. Simulation of ISI and FSI

1) Overview of Flux/Geometry driver and input formats
Available Flux/Geometry drivers

Simple flux driver
• 1D flux histogram (root TH1)
• Single nucleus (with Hydrogen)
• Uniformly distributed vertex in specified radius (2-dim.)
• Fixed direction specified by the configuration (card) file

Super-Kamiokande Atmospheric neutrino flux driver
• Not included in the NEUT distribution (SK library)
• Honda fluxes

• (also supports old Gaisser, Lee, Naumov fluxes)
• H2O target
• Uniformly distributed vertex in the SK detector
• Neutrino direction is determined by the input flux

• 3D for Honda fluxes, 2D (zenith only) for the others.

1) Overview of Flux/Geometry driver and input formats
Available Flux/Geometry drivers

T2K-SK flux driver
• T2K neutrino vector (vector flux file) or 1D histogram
• Single nucleus (with Hydrogen)
• Uniformly distributed vertex in the SK detector
• Fixed direction (T2K beam direction, hard coded.)

T2K-ND280 (off-axis detectors) flux driver
• T2K neutrino vector (vector flux file)

• 4-vector and position at the “incident” plane.
• ROOT Geometry (TGeoManager)

• Target nucleus is taken from the geometry.
• Direction is given by the neutrino vector (flux)

1) Overview of Flux/Geometry driver and input formats
Available Flux/Geometry drivers

T2K neutrino vector
Output neutrino flux vector file from jnubeam

(T2K beam simulation program).
This contains the following variables:
• Neutrino energy (),
• Neutrino direction (, ,),
• Neutrino position (,) at the “incident plane”

in the detector coordinate,
• Weighting factor to give flux/Detector with 1E21, and
• Many other variables (from the beam simulation).

Scintillator1

Iro
n H2O

Scintillator2

Iro
n

De
ca

y
tu

nn
el

n1n2n3

1) Overview of Flux/Geometry driver and input formats
T2K-ND280 flux / geometry driver

• Read neutrino vector information

Incident
plane

• Calculate the path lengths of each volume
and material, like LIron, Lscintillator1 etc...

• Calculate the interaction probabilities
in each volume (material), like

PIron = LIron x ()
Pscintillator1 = Lscintillator1 x ()

:
Ptotal = PIron + Pscintillator1 + Pscintillator2 + …

• Store all the probabilities for each vector.
• Use stored information to generate events.

2) NEUT output data format
Output data formats

1) CERNLIB ZEBRA based bank (ZBS)
2) ROOT class
3) ROOT tree (T2K ND280 specific RooTracker format)
4) ROOT flat tree (similar to the ZBS format)

1) ~ 3) stores complete information including
the particle tracking information in the nucleus and
the physics (model) information and parameters
to generate the event, i.e. re-weightable.
4) does not keep the detailed tracking information.

2) NEUT output data format
NEUT output data structure

Particle stack
Particle #1
Particle #2

:
:

Particle #Nprimary

Particle #Nprimary+1
Particle #Nprimary+2

:
:

Particle #Npart =Nprimary+NFSI

Npart # of particles stored in the particle stack
Nprimary # of particles from initial (primary) neutrino interaction

• Incident particles
neutrino
nucleon(s)
(or nucleus for coherent p prod.)

• Particles produced by the initial
(primary) neutrino interactions

• Secondary particles
Particles produced by the hadron
secondary interactions

• De-excitation g and nucleons

2) NEUT output data format
NEUT output data format

Particle stack
Particle #1
Particle #2

:
:

Particle #Nprimary

Particle #Nprimary+1
Particle #Nprimary+2

:
:

Particle #Npart =Nprimary+NFSI

Particle information
Particle ID (PDG code)
Mass
4-momentum
Status (Escaped from the nucleus =1 or not =0)
Status flag(detail)

0: Escaped from the nucleus
1: Decayed to the other particle
2: Escaped from the detector
3: Absorbed
4: Charge exchanged
5: Pauli blocked
6: N/A
7: Produced particles
8: Inelastically scattered

Initial vertex ID (in the detector)
Final vertex ID (in the detector)
Parent particle index #

2) Output data format
Example of output data

Index Particle Status Parent particle ID Status (detail)
#1 Incident 0 0 -1

#2 Incident Proton 0 0 -1
#3 Outgoing 1 1 0
#4 Outgoing Proton 0 2 7 (produced particles)
#5 Outgoing 0 2 4 (charge exchange)
#6 Re-scattered 1 5 0
#7 Re-scattered proton 1 4 0
#8 Re-scattered proton 1 4 0
#9 De-excitation gamma 1 2 0

+ → + +
+ → ++ → +

This particle is not simulated.

3) Initial state interactions and final state interactions
Initial and final state interaction simulation parts are separated.
In the library, not only

neutrino-nucleus interaction simulation program but
pion-nucleus scattering simulation program and
nucleon-nucleus scattering simulation program are included.

4) NEUT specific issues (difficulties for the users)
• NEUT uses gfortran.
• NEUT extensively uses CERNLIB.

CERNLIB contains old versions of PYTHIA and JETSET.
Makes it difficult for users to compile.
Symbols may conflict with the other libraries.

Possible solution (just an idea)

NEUT Container
(NEUT server)

Receive config.
and commands
from socket.
Return answer
via socket.
(TObject)

Configuration
Target nucleus,
Model selection,
Model parameters etc.

Commands
Cross-section or
Event generation request

Socket

TCP/IP
UNIX

Outputs
Cross-section or
Generated event

