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The QCD axion would solve both
the dark matter problem and the
Strong CP problem of Quantum
ChromoDynamics. Haloscopes attempt
to detect them through the inverse
Primakoff effect, shown on the right.

Single Photon Detection for Axion Searches

Scanning axion parameter space with a standard haloscope be-
comes intractable at high frequencies due to lower signal and in-
creased quantum noise. Single-photon instrumentation has many
benefits over the standard haloscope at higher masses [1]:
• Insensitive to phase; only limited by thermal / shot noise
• Can search at higher masses despite SNR relationship with

cavity volume, as experimentally demonstrated in [2]
• Has already been demonstrated in a dark photon search [3]

Rydberg Atoms

Rydberg atoms have a high principal
quantum number n and are useful for
axion searches because they can have
transition frequencies > 40 µeV.
Right: Regions of the axion-photon inter-
action strength versus axion mass; QCD ax-
ion region is in yellow and haloscope exclu-
sions are in red. Figure modified from [4].

This technique was pioneered by CARRACK [5].
We are well-positioned to take it further:
• Advantages of measuring at higher frequencies:

Smaller cavity requires a smaller dilution refrigerator
Shorter Rydberg paths make R&D implementation easier

• Advantages of us doing it now:
Rydberg atoms are now being studied for quantum computing
New cavity design insulates Rydberg atoms from the Tesla-scale
magnetic fields required for the axion-photon conversion
Experience translates from HAYSTAC collaboration

Rydberg-based Axion search at Yale (RAY)

Detection Scheme

We are building a haloscope setup with Ryd-
berg atom-based single photon detectors.
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Above: A detection cavity is coupled to and locked
in frequency with the conversion cavity.
Below: The system is cooled with a dilution refrig-
erator to reduce thermal noise.

Using 39K Rydberg Atoms

Our setup will use 39K, which is less sus-
ceptible to Stark shift than the Rb used by
CARRACK [5]. Rydberg transitions in 39K
were found with electromagnetically induced
transparency (EIT) spectroscopy [6].
Right: Laser wave-
lengths used for EIT
on a 39K energy level
diagram. Below: EIT
signal measured for
the n = 63 Rydberg
level [6], to which the
Rydberg excitation
lasers will be locked.
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Below: Our EIT setup. The two blue diode lasers are
frequency-locked using spectroscopy, so that the 39K
atoms can be raised to the Rydberg state with a
two-photon transition using a photon from each laser.
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