Rydberg atom-based single photon detectors Yale
for dark matter axion searches

Sumita Ghosh (sumita.ghosh@yale.edu) for Rydberg Axions at Yale

Axion Dark Matter

The QCD axion would solve both
0 Gary /y the dark matter problem and the

Strong CP  problem of (Quantum

fy C'’hromoDynamics. Haloscopes attempt
b to detect them through the inverse
Primakoff effect, shown on the right.

Single Photon Detection for Axion Searches

Scanning axion parameter space with a standard haloscope be-

comes intractable at high frequencies due to lower signal and in-

creased quantum noise. Single-photon instrumentation has many

benefits over the standard haloscope at higher masses |1]:

e Insensitive to phase; only limited by therma.

| / shot noise

e Can search at higher masses despite SNR relationship with
cavity volume, as experimentally demonstrated in |2]

e Has already been demonstrated in a dark photon search (3]
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Rydberg atoms have a high principal
quantum number n and are useful for
axion searches because they can have -

transition frequencies > 40 ueV.
Right: Regions of the axion-photon inter-
action strength versus axion mass; QCD ax-
ion region is in yellow and haloscope exclu-
sions are in red. Figure modified from [4].

This technique was pioneered by CARRACK [5].
We are well-positioned to take it further:

e Advantages of measuring at higher frequencies:

momaller cavity requires a smaller dilution refrigerator
mShorter Rydberg paths make R&D implementation easier

e Advantages of us doing it now:
m Rydberg atoms are now being studied for quantum computing
= New cavity design insulates Rydberg atoms from the Tesla-scale
magnetic fields required for the axion-photon conversion
m Experience translates from HAYSTAC collaboration

Rydberg-based Axion search at Yale (RAY)

Detection Scheme

We are building a haloscope setup with Ryd-
berg atom-based single photon detectors.
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Above: A detection cavity is coupled to and locked
in frequency with the conversion cavity:.

Below: The system is cooled with a dilution refrig-
erator to reduce thermal noise.

Below: Our EIT setup. The two blue diode lasers are

USiIlg 39K Rydb erg Atoms frequency-locked using spectroscopy, so that the K

atoms can be raised to the Rydberg state with a

Our setup will use 39K7 which is less sus- two-photon transition using a photon from each laser.

ceptible to Stark shift than the Rb used by
CARRACK [5]. Rydberg transitions in *K

were found with electromagnetically induced

transparency (EIT) spectroscopy [6].
o T

Right: Laser wave-
lengths used for EIT
on a K energy level
diagram. Below: EIT
signal  measured for
the n = 63 Rydberg
level |6], to which the
Rydberg excitation
lasers will be locked.
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