Rydberg atom-based single photon detectors Yale for dark matter axion searches

Sumita Ghosh (sumita.ghosh@yale.edu) for Rydberg Axions at Yale

Axion Dark Matter

The QCD axion would solve both the dark matter problem and the Strong CP problem of Quantum ChromoDynamics. Haloscopes attempt to detect them through the *inverse Primakoff effect*, shown on the right.

Single Photon Detection for Axion Searches

Rydberg atoms have a high principal quantum number n and are useful for axion searches because they can have transition frequencies > 40 μeV . **Right:** Regions of the axion-photon interaction strength versus axion mass; QCD axion region is in yellow and haloscope exclusions are in red. Figure modified from [4].

This technique was pioneered by CARRACK [5]. We are well-positioned to take it further:

Scanning axion parameter space with a standard haloscope becomes intractable at high frequencies due to lower signal and increased quantum noise. Single-photon instrumentation has many benefits over the standard haloscope at higher masses [1]:

- Insensitive to phase; only limited by thermal / shot noise
- Can search at higher masses despite SNR relationship with cavity volume, as experimentally demonstrated in [2]
- Has already been demonstrated in a dark photon search [3]

- Advantages of measuring at higher frequencies:
 - Smaller cavity requires a smaller dilution refrigerator
 - Shorter Rydberg paths make R&D implementation easier
- Advantages of us doing it now:
 - Rydberg atoms are now being studied for quantum computing
 - New cavity design insulates Rydberg atoms from the Tesla-scale magnetic fields required for the axion-photon conversion
 - Experience translates from HAYSTAC collaboration

Rydberg-based Axion search at Yale (RAY)

Below: Our EIT setup. The two blue diode lasers are Using ³⁹K Rydberg Atoms **Detection Scheme** frequency-locked using spectroscopy, so that the 39 K atoms can be raised to the Rydberg state with a We are building a haloscope setup with Ryd-Our setup will use ${}^{39}K$, which is less sustwo-photon transition using a photon from each laser. berg atom-based single photon detectors. ceptible to Stark shift than the Rb used by CARRACK [5]. Rydberg transitions in 39 K superconducting were found with electromagnetically induced transmission line

Above: A detection cavity is coupled to and locked in frequency with the conversion cavity. **Below:** The system is cooled with a dilution refrigerator to reduce thermal noise.

https://wlab.yale.edu/ https://maruyama-lab.yale.edu/

References:

¹S. K. Lamoreaux, K. A. van Bibber, et al., "Analysis of single-photon and linear amplifier detectors for microwave cavity dark matter axion searches", Phys. Rev. D 88, 035020 (2013).

²K. Backes, D. Palken, et al., "A quantum enhanced search for dark matter axions", Nature **590**, 238–242 (2021).

³A. V. Dixit, S. Chakram, et al., "Searching for dark matter with a superconducting qubit", Phys. Rev. Lett. **126**, 141302 (2021).

⁴C. O'HARE, *Cajohare/axionlimits: axionlimits*, version v1.0, July 2020.

⁵M. Tada, Y. Kishimoto, et al., "CARRACK II—a new large-scale experiment to search for axions with Rydberg-atom cavity detector", Nuclear Physics B-Proceedings Supplements **72**, 164–168 (1999).

