Motivations

- Core-collapse supernovae of massive stars $M \geq 8M_\odot$ emit a huge number of neutrinos ($\sim 10^{56}$).
- The physics of matter under extreme conditions is strongly flavor-dependent (nucleosynthesis, neutron-proton ratio, spectrum splits...).
- Interesting quantum many-body problem governed by the weak interaction.
- Describing the full dynamics is very complicated due to the collective neutrino oscillations that make the equation non linear.

Physical description

- Two-flavors approximation (SU(2) model) to encode the flavor state in a qubit state: $|\nu_0\rangle \rightarrow |0\rangle$, $|\nu_3\rangle \rightarrow |1\rangle$
- N neutrinos encoded into N qubits.
- The flavor Hamiltonian of N neutrinos is:
\[
H = \sum_{i=1}^{N} b_i \cdot \sigma_i + \sum_{i<j} J_{ij} \sigma_i \cdot \sigma_j
\]

1-body term: vacuum mixing
\[
b_i = \frac{\delta m^2}{4E} (\sin(2\theta_{13}) \cdot 0 - \cos(2\theta_{13})).
\]

2-body term: $\nu\nu$-interaction
\[
J_{ij} = \frac{\rho}{N}(1 - \cos(2\theta_{12})), \quad \rho = \sqrt{\delta m^2}
\]

- Initial state for $N = 4$: $|\Psi_0\rangle = |0001\rangle$.
- We can look at the inversion probability:

Unitary implementation

- To perform the quantum simulation we need a quantum gate decomposition of the $U(t)$ operator ($2^N \times 2^N$ unitary matrix on the flavor basis):
- Divide 1-body and 2-body parts that commute:
\[
U(t) = U_{1body}(t) U_{2body}(t)
\]

- Approximate the 2-body part as a product of pair interactions.

Multiple steps evolution

- Evolve the system until T applying $k = T/\Delta t$ Trotter steps:
\[
|\Psi(T)\rangle = U_{Trotter,k} |\Psi_0\rangle
\]

Complexity algorithm scaling

- The number of 2-qubit gates needed to evolve up to T with an error $< \epsilon$ scales polynomially with N:
\[
\text{Decomposition type} \quad \text{Circuit complexity} \quad O\left(\frac{N^2}{\epsilon^2}\right)
\]

Conclusion

- Fully connected gates allow for freedom in gate composition.
- Quantum circuit optimization is a crucial step in order to perform simulations on a near-term quantum device.
- The complexity of the implementation of time evolution scales polynomially with the number of neutrinos.

Acknowledgements: This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. The participation to SNOWMASS 2022 uses resources of the MONSTRE initiative.

References