Physics Community Needs, Tools, and Resources for Machine Learning

- · Machine Learning (ML) is becoming an increasingly important component of cutting-edge physics research
 - · Its computational requirements present significant challenges
- · I will discuss the ML needs of the physics community e.g., across latency and throughput regimes
- · Some Tools and Resources that can satisfy these needs and how these can be best utilized in the coming years

Elham E Khoda

Collaborators:

events/sec

Philip Harris¹, Erik Katsavounidis¹, William Patrick McCormack¹, Dylan Rankin¹, Yongbin Feng², Abhijith Gandrakota², Christian Herwig², Burt Holzman², Kevin Pedro², Nhan Tran², Tingjun Yang², Jennifer Ngadiuba², Michael Coughlin³, Scott Hauck⁴, Shih-Chieh Hsu⁴, Deming Chen⁵, Mark Neubauer⁵, Javier Duarte⁶, Georgia Karagiorgi⁷, Mia Liu⁸

¹ MIT, ² Fermilab, ³ University of Minnesota, ⁴ University of Washington, ⁵ University of Illinois Urbana-Champaign, ⁶ University of California San Diego, ⁷ Columbia University, ⁸ Perdue University

Community Needs

Collider Physics:

- ML algorithms needs to be fast ~ $\mathcal{O}(10\mu s)$ for Level-1 trigger
- Intensive use of ML algorithms in offline reconstruction and data analysis

Neutrino Physics:

 High-resolution 2D projection images using new detector technology → ideal for using computer vision algorithms

100,000 events/sec

1 TB/sec data expected in future DUNE

Astrophysics:

- Exponential growth of datasets and the interconnections between observations with all messengers
- $\mathcal{O}(1s)$ data processing latency

A3D3 Institute FPGA/ASIC CPU/GPU LHC HLT Google Cloud LHC L1T DUNE Latency requirement [s]

matrix operations

Nvidia A100 GPUs $\mathcal{O}(100)$ times faster than Intel Xeon CPUs

Configurable digital circuits Specialized multiplication units

(DSPs)

CPU Widely used

Not efficient for ML inference

Future

- specialized processors - optical-based ML
 - processors
- Tensor processing units (TPUs) Intelligence Processing

Units (IPUs)

Software and Resources

- Open source industry tools: PyTorch, TensorFlow, ONNX, Triton e.t.c.
- Other industry tools for inference, automation, orchestration (Kubernetes)

ML-inference on FPGA: hls4ml, FINN, Vitis Al

As-a-service (aaS) computing paradigm:

- Client-server computing model. Cost-effective and performance-efficient.
- Services for Optimized Network Inference on Coprocessors (SONIC)

Lessons from Industry: Coordinated efforts among researchers from different domains of science engineering, and hardware systems

Cloud computing

FPGAs

- Flexibility in resource selection
- High cost but good for shortterm development

High Performance Computing (HPC)

- Fair-share scheduler
- GPU clusters
- ORNL: 27k V100
- NERSC: 6k A100

Hardware and **Electronic Design Automation (EAD) tools**

- Expensive industry tools
- Industry collaboration
- Open source solutions

Applications

Collider:

- Level-1 and High-Level Trigger
- Reconstruction and calibration of final objects or lower-level inputs like trajectories, vertices, calorimeter clusters
- Identification of long-lived particles
- Anomaly detection using Autoencoders in Run-3 and High-Luminosity LHC

Neutrinos:

- Event reconstruction with ML. The SONIC integrated framework shows a factor of 3 speed up for ProtoDUNE event reconstruction
- CNN-based event selection with FPGA for DUNE
- Future DUNE Far Detector parallel process: up to several GB information with millisecond latency.

Astrophysics:

- Denoising and astrophysical source identification.
- Gravitational-wave detection and parameter estimation.
- Attain sub-second latencies with hardware accelerators

Summary

- ML will help overcome some of the challenges of physics research in the coming decade. But ML is computationally expensive.
- Potential hardware solution: GPUs, FPGAs, and ASICs.
- Use industry tools and develop open source software for specific needs.
- Continued collaboration with industry and HPC centers will be critical.

References

- 1. A3D3 Institute, https://a3d3.ai/, 2022
- 2. P.Harris, et al. arXiv:2203.16255 J. Ngadiuba and M. Pierini, Hunting
- anomalies with an Al trigger, CERNCOURIER, 31 Aug 2021
- 4. M. Wang, et al. Front. Big Data 3 (2021) 604083 arXiv:2009.04509
- 5. MicroBooNE collaboration, Phys. Rev. D 99 (2019) 092001 arXiv 1808.07269
- 6. A. Gunny, D. Rankin, J. Krupa et al. Nat Astron 6, 529–536 (2022)