
  

Physics Community Needs, Tools, and Resources for 
Machine Learning

Community Needs

• Machine Learning (ML) is becoming an increasingly important component of cutting-edge physics research 
• Its computational requirements present significant challenges 

• I will discuss the ML needs of the physics community e.g., across latency and throughput regimes 
• Some Tools and Resources that can satisfy these needs and how these can be best utilized in the coming years 
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Collider Physics:  
• ML algorithms needs 

to be fast ~  
for Level-1 trigger


• Intensive use of ML 
algorithms in offline reconstruction and data analysis


Neutrino Physics:  
• High-resolution 2D projection images using 
new detector technology  ideal for using 
computer vision algorithms

• 1 TB/sec data expected in future DUNE


Astrophysics:  
• Exponential growth of datasets and the interconnections 

between observations with all messengers

•  data processing latency 

𝒪(10μs)

→

𝒪(1s)

Software and Resources
• Open source industry tools: PyTorch, TensorFlow, ONNX, Triton e.t.c.

• Other industry tools for inference, automation, orchestration (Kubernetes)

ML-inference on FPGA: hls4ml, FINN, Vitis AI


As-a-service (aaS) computing paradigm: 

• Client-server computing model. Cost-effective and performance-efficient.

• Services for Optimized Network Inference on Coprocessors (SONIC)


Lessons from Industry: Coordinated efforts among researchers from different 
domains of science engineering, and hardware systems

Summary

Applications
Collider: 

• Level-1 and High-Level Trigger

• Reconstruction and calibration of final 

objects or lower-level inputs like 
trajectories, vertices, calorimeter 
clusters 


• Identification of long-lived particles

• Anomaly detection using Autoencoders 

in Run-3 and High-Luminosity LHC

Neutrinos: 

• Event reconstruction with ML. The SONIC 

integrated framework shows a factor of 3 speed 
up for ProtoDUNE event reconstruction


• CNN-based event selection with FPGA for DUNE

• Future DUNE Far Detector parallel process: up to 

several GB information with millisecond latency.

Astrophysics:  

• Denoising and astrophysical source identification. 

• Gravitational-wave detection and parameter estimation. 

• Attain sub-second latencies with hardware accelerators

• Flexibility in 
resource selection


• High cost but 
good for short-
term development

High Performance 
Computing (HPC)

Cloud 
computing

• Fair-share scheduler

• GPU clusters

• ORNL: 27k V100

• NERSC: 6k A100

Hardware and 
Electronic Design 
Automation (EAD) tools

• Expensive industry 
tools


• Industry collaboration

• Open source solutions

GPU 
Efficient for large 
matrix operations


Nvidia A100 GPUs  
 times faster than 

Intel Xeon CPUs
𝒪(100)

CPU 
Widely used


Not efficient for 
ML inference

FPGAs 
Configurable digital 

circuits

Specialized 

multiplication units 
(DSPs) 


Future 
specialized processors


- optical-based ML 

processors


- Tensor processing 
units (TPUs)


- Intelligence Processing 
Units  (IPUs) 

AI

• ML will help overcome some of the challenges of physics research in the coming 
decade. But ML is computationally expensive.


• Potential hardware solution: GPUs, FPGAs, and ASICs .

• Use industry tools and develop open source software for specific needs.

• Continued collaboration with industry and HPC centers will be critical.
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