Introduction

The discovery of the Higgs boson at the CERN Large Hadron Collider (LHC), in
2012 [1] [2], opened a new era of research in particle physics, aimed at
measuring its properties. In particular, the measurement of the Higgs boson
couplings provides a strong test of the Standard Model (SM) and a direct probe
to possible new physics beyond the SM. So far, only the couplings of the Higgs
boson to the vector bosons and the third-generation fermions of the SM have
been measured, which turned out to be in agreement with the predictions of the
SM [3] [4]. On the other hand, the couplings to the first and second-generation
fermions of the SM and the Higgs self-couplings are still to be observed. In
addition, all the searches for new physics carried out at the LHC so far, suggest
the absence of new physics signal on the TeV scale.

Whether it is to carry out precision measurements or to explore the new energy
frontier in the multi-TeV energy scale, hardly within the reaches of the LHC, the
construction of a new collider will be required [5].

The muon collider, among the projects currently under study for the next
generation of particle accelerators, represents a unique machine, which has the
capability to provide leptonic collisions at energies of several TeV [6]. The huge
physical potential held by the multi-TeV energy scale will enable a novel research
programme ranging from high precision measurements of known SM processes
to high-sensitivity searches for the exploration of new physics beyond the SM. A
multi-TeV muon collider will produce huge samples of Higgs bosons that will
allow the determination of the Higgs boson properties with unprecedented
precision, including its couplings to the lighter sectors of the SM and its trilinear
and quartic self-couplings.
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Figure 1. Schematic layout of a 10-TeV muon collider complex [7]. The muon
injector system includes the proton driver, a high power target system with
capture solenoid for the pions generated by the proton interactions with the
target, a pion decay channel where muons are collected and subsequently
bunched together, a muon ionization cooling channel that provides cooling for
both positive and negative muon beams, and a low energy muon accelerator
stage. From the injector, each species of muon beam is transferred into a high
energy accelerator complex that can take the beams to the multi-TeV energies
required. Finally, the beams will be transferred to a smaller collider ring whose
circumference is optimized for luminosity performance.
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Event selection
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« Two opposite-charge muons in each event. 10 5
* Di-muon system invariant mass in the range 105-145 GeV. 1 Wi -t
« Single muon polar angle in the range 10-170 degrees. P
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Figure 2. Stack of the di-muon system invariant mass distributions of the preselected
signal and background events in the invariant mass range from 105 to 145 GeV.

The event classification is carried out with the use of two multivariate classifiers based on a boosted decision tree (BDT).
Each one of the two classifiers is trained independently to discriminate between the whole signal contribution and one of the two main background contributions:

+ The "BDT1" is trained to discriminate between the signal and the p*p~—p* = v, v, background
« The "BDT2" is trained to discriminate between the signal and the pTu~—»pTu "t~ background

_ \s=3TeV,1ab’ _ \s=3TeV, 1 ab’
8 10 g Muon Collider s o 8 10° Muon Collider B Figure 3. Stacks of the BDT1 (left) and BDT2 (right) scores
= qot Smeeten - p——— = ot Smaeen e distributions obtained with the application of the trained
I 103§ P W W W5, S 10 P oW W, classifiers to the samples used for the analysis. The training
(0 e z W 0 |02 AR and testing of the classifiers are performed using a fraction
3 W, W, of the samples which is reserved for this purpose only and
10w 10 it is not used in the analysis.
1k 1
107 107"
102 1072
103 & 107
| | PRI N T S S T S S
-1 -0.5 0 0.5 1 . 0.5 1
BDT1 score BDT2 score .
\s=3TeV,1ab
The event selection is performed with the implementation of a double cut on the % " -
. . . . e . . - B oy oHY Y Hop'p
classification scores obtained with the two BDT classifiers, which are applied separately S 5o glil':;a%o(;olllder —— PR
to all the samples, according to the following procedure: s : E— tiﬁ:ﬁ_vxjvzjbﬂ Wisnty, (@)
= I TNTEETTR TRV
« The positions of the two cuts, one for each classifier, are optimized simultaneously = 40+
such that they maximize the overall signal significance, defined as §/vS + B, where S - L
and B are the total signal and background contributions respectively. E
 The classification scores are evaluated for each single event using both the BDT1 and 30
BDT2 classifiers. -
- The event is taken as a signal event if the BDT1 score satisfies the cut chosen for the I
BDT1 classifier or if the BDT2 score satisfies the cut chosen for the BDT2 classifier, i.e. 20 [E=
if the event is successfully discriminated against at least one of the two main B
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