

Detector performance for Higgs physics measurements at muon collider

L. Buonincontri^{1,2}, on behalf of the Muon Collider Physics and Detector working group ¹Università degli Studi di Padova, ²INFN-Padova

Higgs Physics at Muon Collider

- A Muon Collider could be the ideal machine to study Higgs physics, since muons collisions can take place at high energy and luminosity
- It puts together the advantages of lepton colliders (all the beam energy available for collisions) and hadron colliders (negligible energy loss via beamsstrahlung and synchrotron radiation).

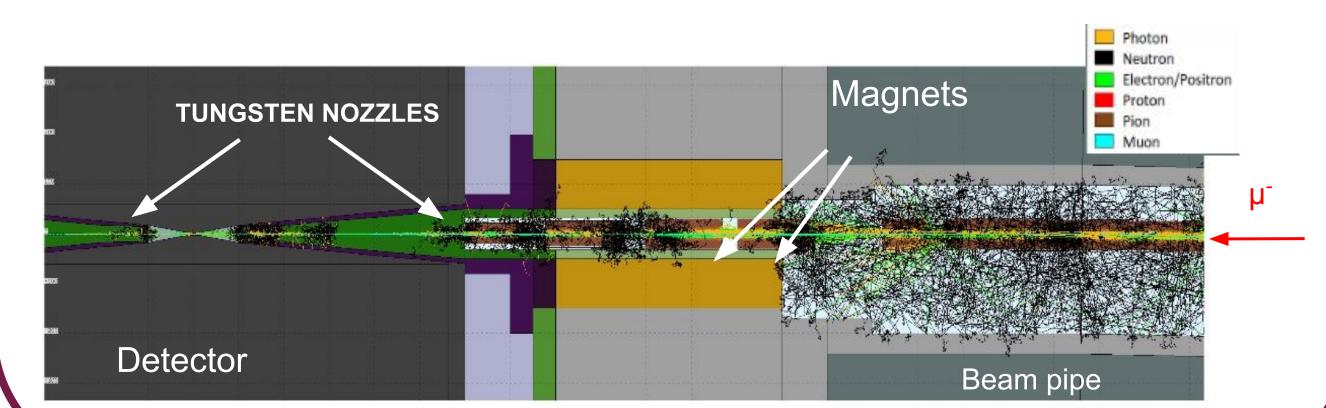
					10^7	$VV \rightarrow h$
	Parameter	Tar	get V	alue	106	$VV o t \overline{t}$
	Centre-of-mass energy [TeV]	3	10	14	\mathfrak{L}^{06}	1717
	Luminosity $[10^{34} \text{ cm}^{-2} \text{ s}^{-1}]$	1.8	20	40	10 ⁵	$VV \rightarrow I$
					0 104	
					10^4 $VV \rightarrow t\bar{t}h$	$\mu^+\mu^- \rightarrow tt$
*	Challanga				10^{3}	$\mu^+\mu^- \rightarrow hZ$
	Challenge:					+ - , , , , , , , , , , , , , , , , , ,

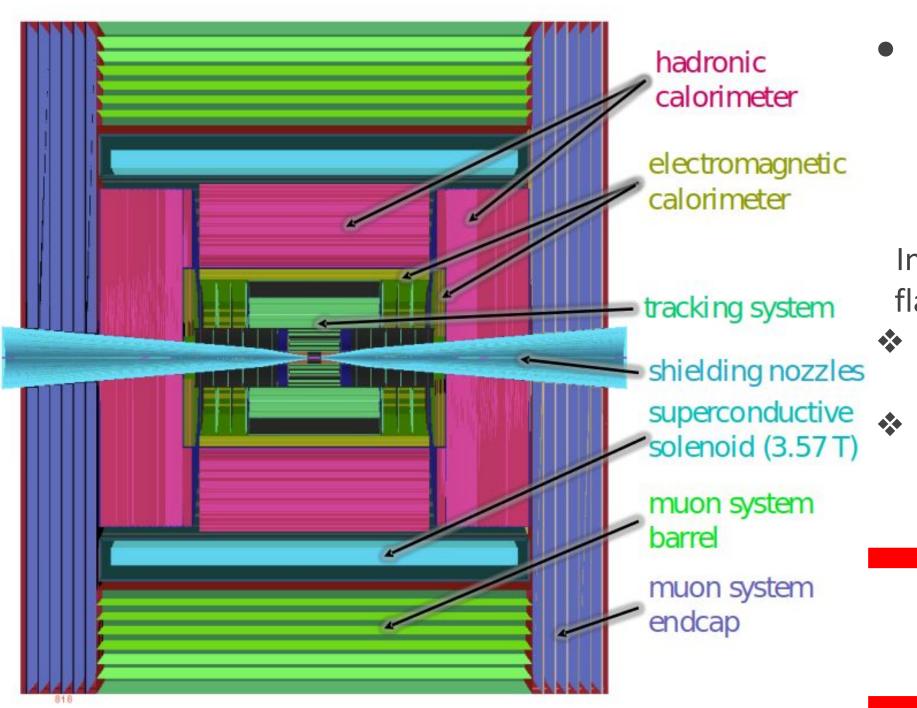
Figure: Expected number of events for different processes as a function of $E_{CM}[1]$

 $E_{\rm cm}$ [TeV]

The Beam-Induced Background (BIB)

- ❖ O(10⁸) BIB particles enter the detector at every bunch crossing (for a 750 GeV beam with $^{2}\cdot 10^{12}$ muons, $4\cdot 10^{5}$ decays/m of lattice are expected)
- Although BIB levels in the detector can be mitigated with tungsten nozzles, detailed simulation of detector and BIB is crucial to determine detector performance
- BIB available for full simulation at 1.5 TeV, simulation at 3 TeV will be ready soon...




Figure: Scheme of the detector and MDI with pictorial view of BIB particles tracks [2]

BIB effects on Muon Collider Detector

the Beam Induced Background, produced by

muons decay in circulating beams, may affect

detector performance

• Large hits multiplicity in the tracking system due to BIB particles

 $\mu^+\mu^- \rightarrow t\bar{t}h$

• **Diffuse BIB background** in the calorimeter: at the ECAL barrel surface the flux: 300 part/cm², mostly photons with <E>=1.7 MeV

In the **reconstruction** of physics processes involving heavy flavour jets in the final state (such as $H\rightarrow bb$), this implies:

- Large number of fake tracks
- > Large number of **fake secondary vertices** (SV)
- Large number of **fake jets**
- Most of BIB particles are asynchronous with respect to the bunch crossing: timing is crucial to remove tracker and calorimeter hits due to BIB
- **Energy threshold of 2 MeV is applied to calorimeter** hits selection to reject BIB calorimeter clusters

Track reconstruction performance

Reconstruction of single muons events from IP [4]

Figure (up): track reconstruction efficiency as a function of the true muon transverse momentum

Figure (down): track reconstruction efficiency as a function of the true muon polar angle

Combinatorial fake tracks due to BIB have low p₊ (<2 GeV) and number of hits in the tracking system

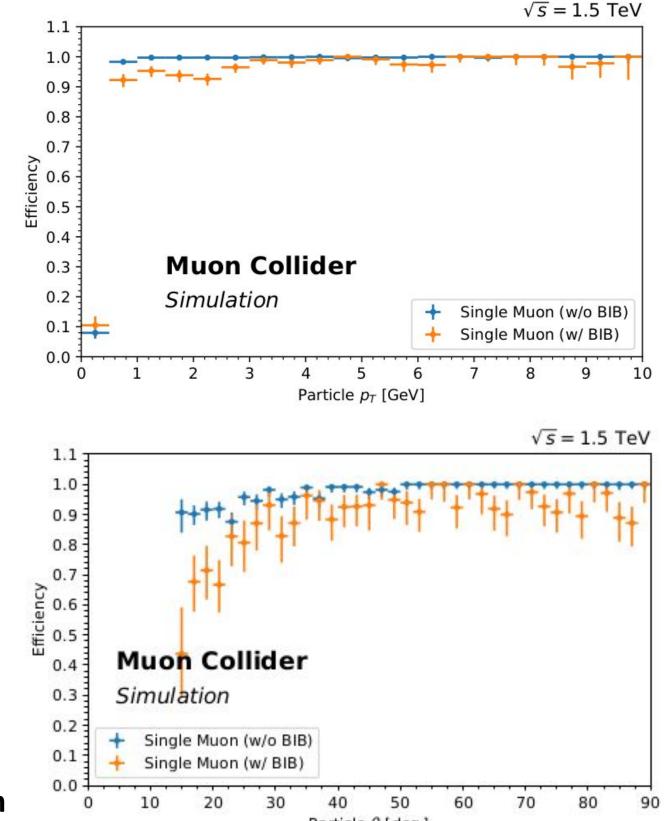


Figure: Scheme of the muon collider detector employed for the full simulation [3]

- Heavy flavor jets identification Selection requirements on p_{τ} , number of hits in the tracking system and tracks impact parameter to reduce fake tracks
- Primary Vertex (PV) reconstruction
- SV reconstruction: use tracks not compatible with PV [4]

- **Muon Collider** Simulation P_T [GeV] Figure: b tagging efficiency as a function of the true
- b jet tagging efficiency ~55%
- Mistag on c jet ~20 %

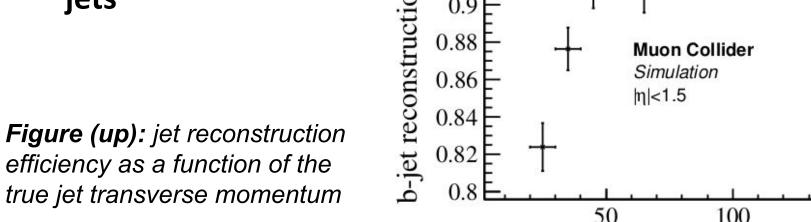
59500

65400

Two tagged jets

o M.. <300 GeV

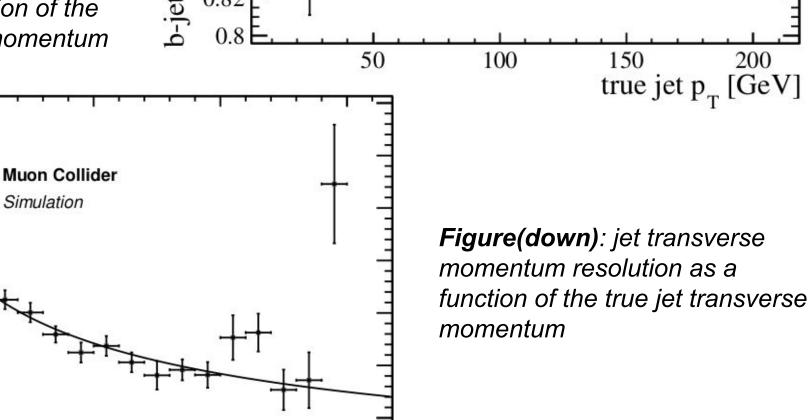
 \circ p_T jet > 40 GeV

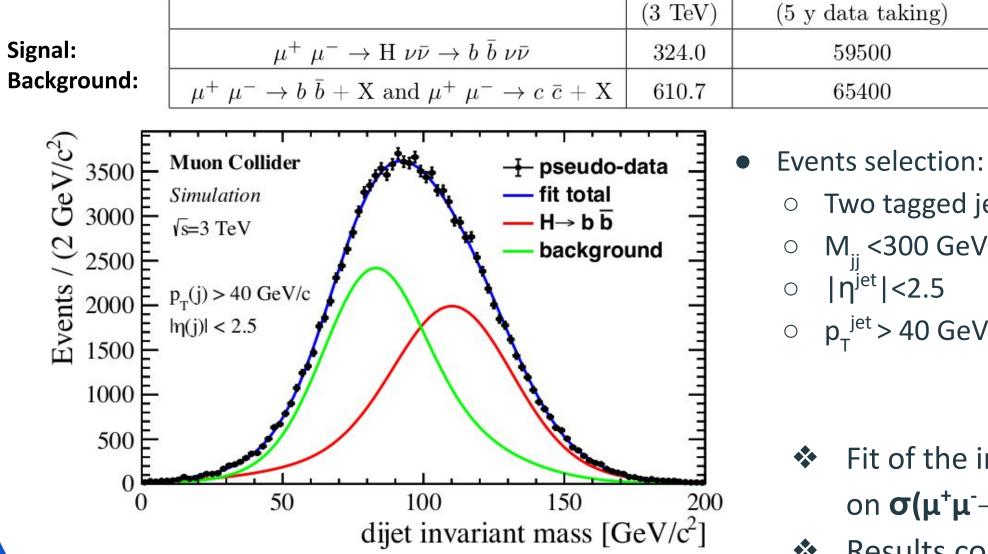

 \circ $|\eta^{\text{jet}}| < 2.5$

jet transverse momentum

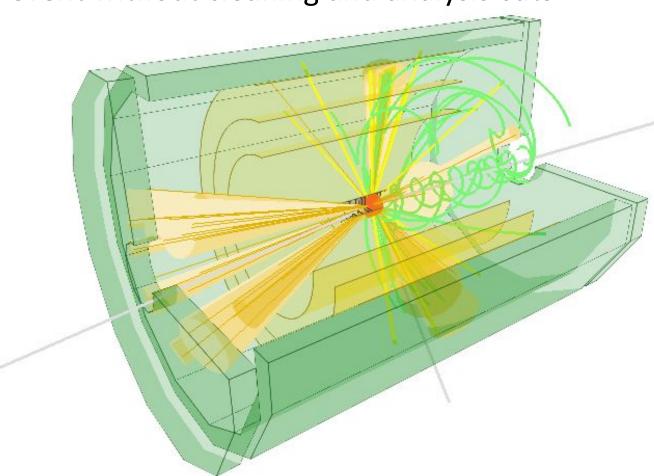
Mistag on light and fake jets ~5%

Jet reconstruction performance


- Combine tracks and calorimeter information to reconstruct particles, jet clustering with k₊ algorithm [4]
- Requirement of at least one track into jets to remove fake jets


true jet p_T [GeV]

efficiency as a function of the true jet transverse momentum


50

Determination of the uncertainty on H→bb cross section Events with $\mathcal{L}=1$ ab⁻¹ Process (5 y data taking)

Figure: $\mu^+\mu^- \rightarrow H(\rightarrow bb^-) + X$ reconstructed event without cleaning and analysis cuts

- Fit of the invariant mass gives an expected statistical uncertainty on $\sigma(\mu^+\mu^-\to H)\bullet BR(H\to bb^-)$ of 0.75% at 3 TeV and 1.0 ab⁻¹
- Results comparable with CLIC (0.3% with 2.0 ab⁻¹) [5]

REFERENCES:

[1] J. De Blas et al. In: 2022 Snowmass Summer Study. Mar. 2022. arXiv: 2203.07261

true jet p_T [GeV]

- [2] F. Collamati et al 2021 JINST 16 P11009
- [3] ILCSoft repository. url: https://github.com/iLCSoft.

100

- [4] N, Bartosik et al. In: 2022 Snowmass Summer Study. Mar. 2022. arXiv: 2203.07964
- [5] Abramowicz, H., Abusleme, A., Afanaciev, K. et al. Eur. Phys. J. C 77, 475 (2017).

Conclusions:

 Very good detector performance even though detector configuration and reconstruction algorithms are not optimized