
Automated Trigger Menu Refinement via Active Learning 


• Using the cost-effective interpretable model, we construct an active learning model that continuously 
updates itself with incoming data, and provides explanations for those updates


• Properly quantify the uncertainty of the decisions of the data-driven trigger system
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Dataset


Simulated MC dataset (CMS Collaboration [1]) of top quark 
pair events generated in a p-p collision with a centre-of-
mass energy of 8 TeV. Includes features of the event and 
the different trigger selections (defined by  specific trigger 
labels) that each event may or may not have passed.
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Motivation: LHC Trigger System

• Data filtering algorithms (trigger algorithms) targeted at discovery sciences
must operate at the level of 1 part in 105 due to resource constraints.

• Design relies heavily on prior knowledge of the feature space being probed.

• redundant labeling schemes and cost-ine↵ective algorithm execution.

Data Driven, Explainable Triggers

• Refine the trigger and data filtering algorithms at future physics facilities.

• Each trigger algorithm incurs a latency at runtime. Thus, finding the most
e�cient set of trigger algorithms at runtime is crucial for a real-time
trigger system.

Figure 1: An example cost-e↵ective explanation of an event.

Example of Non-interpretable LHC Trigger Recommendation

Only applying the b-jet
trigger to an event such as
H Ñ bb, rather than also
applying a threshold di-jet
trigger.

With an interpretible algorithm we
hope to gain information that this
decision was made because the most
important physics feature for this
event is the b-jet tagging value.

Local Interpretable Explanations (LIME)

• Uses local interpretable surrogate models to explain individual predictions of black box models.

• Does not take into account cost of each feature.

Problem Statement

Our work extends LIME and can be viewed as a sparsity-based locally interpretable
model, where we seek a minimal-cost explanation for the LHC trigger outputs.

• Given a dataset X P Rnˆp (n collision events ; each event is described by p numerical features),
a set of labels T (known as triggers), and an outcome matrix y “ t0, 1unˆ|T | (i.e. triggers each
event satisfies).

• cost function cpfiq: the cost of using feature fi to predict the outcome of an event.

• Goal: Identify the most cost-e�cient subset of features that enables us to maximize coverage
of X in the trained model while using selected features to make predictions.

Our Approach: Cost-e↵ective (CE) LIME

LIME with Elastic Net

• Recap: LIME trains a sparse model with a dataset of perturbations of x. The trained weight
vector of this model describes the importance of each feature.

• We adopt elastic net as a general formulation (with the LASSO and ridge regressions being
special cases), which trades o↵ model interpretability (sparsity) and accuracy:
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Cost E↵ective Elastic Net

To obtain a �̂ which is both sparse and cost e�cient, we propose adding a coe�cient of cpfiq, which
is the cost of feature i, to each respective term |�i| and |�i|2 in the elastic net penalty:
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Submodular Pick

• A model-wide, global explanation similar to the event specific explanation is desired.

• LIME with Submodular Pick (SP-LIME) creates an importance vector I , which gives us a total
ordering of all features F that enables us to select an optimal subset of F .

• We call this method of using a modified SP-LIME with a cost-e↵ective elastic net CE-LIME .

Experimental Setup

• Toy dataset

– randomly generated by make_classification of scikit-learn.

– cost function c created from a uniform distribution in the interval r0, 10s.
• CMS Open Data

– publicly available; cf. CERN Open Data Portal, 2017.

– 9 di↵erent triggers with ran-
domized cost of features in ev-
ery trial, with the costs being
uniformly distributed in r0, 10s.

– the figure shows the fractional
overlap between features which
share trigger labels and trigger
label categories. The large frac-
tional overlap emphasises the
potential for these algorithms to
be optimized.

Experimental Results

Toy

Dataset (100 trials)

CMS

Open Data (10 trials)

* This work was supported by the Center for Data and Computing at the Uni-
versity of Chicago via a Discovery Grant.

๏ Too many data, too large data -> need to filter online 

๏ Filters based on theoretical bias: we might be loosing 
good events

The LHC Big Data Problem
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‣ L1 trigger: local, hardware based, on FPGA, @experiment site 

‣ HLT: local/global, software based, on CPU, @experiment site 

‣ Offline: global, software based, on CPU, @CERN T0 

‣ Analysis: user-specific applications running on the grid
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Motivations

• The volume of data available at contemporary experiments for high-

energy physics is enormous and complex

• Sophisticated trigger systems for selecting relevant physics processes 

• A trigger menu defines the selection criteria 

• Trigger design relies heavily on prior knowledge of the feature-space 

being probed and modularized approaches to optimization are used

• Redundant labeling schemes and cost-ineffective algorithm execution 

Data-driven Interpretable Trigger

• Replace the hand-designed trigger menu with an optimized data-driven trigger 

system with minimal run-time cost, without compromising physics coverage 

• Interpretable predictive model: for any given event, provides explanation for the 

trigger decision; allows for pruning costly ineffective individual algorithm labels

Figure 2: An “open-box” predictive model that deciphers the trigger menu with automated explanations and an associated cost
model. Our data-driven trigger system interprets the trigger decision for a given event record by (1) learning a mapping from
the physics features (top row) to the labels extracted by the trigger algorithms from the existing trigger menu (middle row),
and (2) generating explanations of the trigger decisions (i.e. to keep or discard) by automatically identifying an efficient set of
trigger algorithms that contribute the most to the decision (bottom row). In the explanation diagram, larger weight implies that
the corresponding label contributes more to the decision.

8 TeV has been used [1]. The dataset has been analyzed to extract the information of the simulated events relevant
for this project, including the different HLT selections that each event may or may not have passed. Each trigger
selection corresponds to a different set of algorithms, and is defined by a specific trigger label. The resulting
dataset contains 104 events, each described by a set of low-level features (⇡ 100), corresponding to the kinematic
observables associated to the objects in the final state (e.g. electrons, muons, jets, missing energy). From the
simulation point of view, a trigger path consists of a set of consecutive software modules, each performing a well
defined task such as the reconstruction of the physics objects and the actual selection. The real cost of a trigger path
is evaluated according to the computational resources spent to run the algorithms involved. While this information
is not available in the simulated dataset analyzed, the number of software modules is used as an indicator of the
cost, as this quantity reflects the complexity of a trigger path. The dataset contains about 400 different trigger
labels, each associated to a specific trigger cost.

For the purpose of this project, we plan to use a simulated sample of the Higgs Boson production and decay,
chosen among the available CMS open data.

Modeling and Optimal Design of Trigger Menu with Cost-Effective Elastic Net
For Thrust I of this project, we focus on the optimization of an existing trigger system by through a novel cost-
effective and explainable machine learning model. Figure 2 illustrates the explanation mechanism for the data-
driven trigger menu. As detailed in the previous section, we first construct a cost model by which the data filtering
and curation process can be quantifiably assessed, by which we can prune those costly but ineffective individual
algorithm labels. We then investigate the following (combinatorial) optimization problem: Given a ground set of
candidate trigger algorithms from the existing trigger menu and a latency cost for each trigger algorithm, we seek
an optimal subset of trigger algorithms for each incoming data event, such that the selected algorithms can jointly
make the correct filtering decision with the minimal latency cost. The solution of this optimization problem is
then used as the explanation of our open-box predictive model, which in turn will be used to optimize the latency
of the existing trigger system.

In this work, we introduce a novel twist to the elastic net [4] (henceforth referred to as the cost-effective
elastic net), as a general formulation that trades off feature cost and model accuracy. We then construct local
interpretable model-agnostic explanations (LIME) [5] with the cost-effective elastic net as the sparse model to
create interpretable explanations which additionally have the property of being cost-effective. We refer to our
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Cost-Effective Interpretable Model

Given a set of candidate trigger labels from the existing trigger menu and a latency cost for each 
trigger label, we seek an optimal subset of labels that make the correct filtering decision with the 
minimal latency cost. The solution is used as the explanation of our predictive model, which is 
used to optimize the latency of the existing trigger system, by pruning the costly labels.

A novel cost-effective elastic net is used to construct local interpretable model-agnostic 
explanations: CE-LIME. The algorithm returns a weight vector  describing the importance of 
each feature , accounting for the cost 


β
fi c( fi)

̂β = arg min
β ( |y − Xβ |2 + (1 − α)λ

p

∑
i=1

|βi | ⋅ c( fi) + αλ
p

∑
i=1

|βi |
2 ⋅ c( fi))

(a) Cost vs Performance, CMS Open Data (b) Cost vs # Used Features, CMS Open Data

Figure 3: Experimental results on CMS Open Data. We compare our proposed algorithm cost-effective LIME (CE-LIME)
with three baseline approaches, namely LIME with submodular pick (LIME), a sparse regressor via elastic net regression
(Global), and a cost-effective elastic net (CE-Global). Error bars represent standard error over all trials. Figure 3a shows that
the required cost to achieve any accuracy level is the lowest for CE-LIME for most cases, and Figure 3b shows that the cost of
using a certain number of features in the order given by CE-LIME is competitive with the globally trained cost-effective elastic
net (CE-GLOBAL).

proposed algorithm by CE-LIME. Figure 3a shows that the required cost to achieve any accuracy level is the
lowest for CE-LIME for most cases, and Figure 3b shows that the cost of using a certain number of features in the
order given by CE-LIME is competitive with the globally trained cost-effective elastic net (CE-GLOBAL). The
algorithmic details for CE-LIME, along with the full report for this work are summarized in [6], and have been
presented at the NeurIPS Workshop on Machine Learning and the Physical Sciences in December 2020.

Automated Trigger Menu Refinement via Active Learning
Thrust II focuses on the discovery of novel scientific insights: we propose to derive novel active learning algo-
rithms for exploring new phenomena and inferring the underlying physics. A key challenge revolves around how
to properly quantify the uncertainty of the decisions made by the (data-driven) trigger system. To address this
problem, we consider a novel problem in active anomaly detection in the presence of multiple labeling oracles
(i.e. trigger algorithms).

In the context of LHC, the trigger algorithms can be viewed as “weak labelers” for detection of events of
interest, as each algorithm is highly specified to detect certain characteristics of incoming physics events. We
therefore formulate the problem studied in this task as Active anomaly detection with an ensemble of weak labelers.
Importantly, a novelty of this problem lies in that the weak labelers (i.e. trigger algorithms) can only provided
one-sided label for the detection task: We would flag an event as “event of interest” if any of the trigger algorithms
suggests that the event is interesting; an event is not interesting if none of the trigger algorithms cast the event
as interesting. More concretely, we assume access to a set of n unlabeled data points X = {x1, . . . , xn} as our
(unlabeled) pool, and k anomaly labelers L = {l1, . . . ., lk�1, lk} each providing one-sided label for any event
(with l = 1 denoting “interesting” and l = 0 otherwise—in other words, a labeler is only certain about their own
positive predictions). Each labeler li is associated with a cost function ci. We seek the optimal active learning
policy (which decides which labeler to query in a sequential manner), such that upon termination, it returns an
optimal training set for the data-driven trigger systems with a minimal cumulative label cost.

We consider a novel deep anomaly detection model as illustrated in Figure 4. We construct an autoencoder
to capture the density estimate for each event. Given a data point x and its labels by k one-sided oracle l1, ..., lk,
the final output y :=

Wk
i=1 li is modeled as the union (logic-or) of the individual labels. Therefore, when per-

forming active learning, the key challenge is to quantify the predictive uncertainty of y. Our preliminary attempt
in constructing a running algorithm for active learning rely on the classical uncertainty sampling strategy. As
ongoing and future work, we are exploring novel goal-oriented acquisition functions that jointly take into account
the objective (i.e. anomaly detection) and the budget constraint on the label cost.
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Figure a: the required 
cost to achieve any 
accuracy level is the 
lowest for CE-LIME for 
most cases

Figure b: the cost of 
using a certain number 
of features in the order 
given by CE-LIME is 
competitive

Ongoing Work

• We are exploring novel algorithms that 

account for the objective (anomaly 
detection) and the budget constraint on the 
label cost


• Demonstration of the approach is being 
prototyped using a Xilinx Versal Adaptive 
Compute Acceleration Platform (ACAP) 
board [3]


• Xilinx Versal ACAPs contain programmable 
AI engines, dedicated processors for high-
speed, real-time data processing that 
support dynamic reconfiguration
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Figure shows the correlation analysis on the dataset: the 
trigger menu are heavily overlapped. This suggests the 
potential for these trigger algorithms to be optimized. 

Figure illustrates the complex trigger system used at LHC experiments, as an example

We seek the optimal active learning model that learns from data and 
decides which trigger label to query in a sequential manner. Only through 
interpretation of what is learned, we can understand why and how the 
trigger menu should be updated. We construct an autoencoder to capture 
the density estimate for each event.


Biggest challenge: simulating the selection of events via this mechanism, 
and correctly modeling and understanding the efficiencies of this evolving 
self-driving trigger system.
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