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• Gravitational waves - ripples in spacetime - contain information 
about important cosmological/astronomical questions: neutron star 
EoS, Hubble constant, the very early universe, etc.7,10,6

• But why look at only one stream of information when there are 
multiple – Multi-Messenger Astrophysics!

• Gravitational wave detectors can act as triggers for other types of 
observatories

• More gravitational wave detectors, greater sensitivity, and a larger 
parameter space,5,6 coupled with a need for low latency, point us 
towards Machine Learning solutions

DeepClean
• 1-D convolutional autoencoder
• Uses system and environmental 

monitoring channels to predict and 
subtract noise from strain data8

• Able to simultaneously subtract 
linear, non-linear, and non-
stationary noise8

• Fully online implementation planned 
for O4 data collection
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BBHNet
• 1-D convolutional network
• Performs binary classification of 

noise/binary black hole (BBH) 
mergers on DeepClean output

• Able to differentiate between true 
signals, glitches, and background 
noise in a low-latency manner1

• Future: online implementation, 
inclusion of neutron star mergers  
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Representations of the 4 extrasolar messengers. From left to right: gravitational waves, cosmic 
rays, neutrinos (DUNE), gamma rays (Fermi telescope)4,11,3,9

• Tools need to be used to be effective - not uncommon for good software to 
languish due to poor adoption or implementation

• Physicists shouldn’t need to become ML experts to do analysis
• Development is easier when collaborators can understand each others’ work
• Use established industry practices from software development and MLOps

Organizational Practices2
• Deliberately designed structure for code and repository: monorepo
• CI/CD pipelines version experiments and automate model deployment, which 

ensures repeatable, meaningful results

Inference-as-a-Service1,2
• Models are hosted in a centralized server, inference application loads them for 

user requests
• Keeps all users in sync with latest version, and abstracts away the overhead
• Makes efficient use of available resources – can optimize hardware for inference

Hermes Libraries2
• Developed to address the difficulties that come with using an inference server
• Handles model export and acceleration, asynchronous data processing and 

inference request generation, and cloud-based resource allocation

Flow of data through the DeepClean/BBHNet pipeline in the online streaming configuration

Inference-as-a-Service model. Users are kept in sync with the most up-to-date 
model, and the inference server handles job coordination and resource allocation2
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