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Problem PELICAN Architecture

Machine learning in physics laces a crisis ol The bases ol permutation-equivariant linear maps between tensors of arbitrary ranks can be found
model complexity and interpretability. The pri- in the related work [2]. For us the relevant cases are 2 — 2, 2 —» 1 and 2 — 0, in which case
mary way ol limiting these issues while reaching the dimensionalities are 15,4, and 2, respectively. Some examples of the 2 — 2 maps include the
oreat performance is by exploiting symmetries. identity, T;; = ¢ Txj, T;; = diag(T), and T" =1 - trT, all illustrated below. Here, summation can be

CNNs, by virtue of their translational equiv- | | replaced with any aggregation function (a symmetric function RN — R). Using the entire space of
ariance, greatly reduced model complexity and permutation-equivariant aggregations allows tor optimal expressivity while stabilizing the training.
eased training. Similarly, permutation equivari- Below is the architecture for a permutation-invariant task, but a permutation-equivariant architecture

ance is the cornerstone of graph network meth- as in (2) can be obtained simply by replacing the 2 — 0 layer with a 2 — 1 one.
ods. These ideas can be applied to other physical

symmetries, such as the Lorentz symmetry and - XL
particle permutations, to tackle tasks such as jet =
tagging [1] and momentum reconstruction. /C ‘ /
., B N| Pi- P
Lorentz Equivariance Emh g )M@
[T the inputs to our problem are a collection of N / Dropout
particles’ 4-momenta: P1>-- pN, then a tunda- gquﬁg MLP e Batchnorm

mental theorem Irom classical Invariant Theory
lets us characterize Lorentz-invariant or equiv-
ariant observables ol these particles. With per-
mutation invariance necessarily demanded, all
such observables are Iunctions of only the pair-
wise dot products:

I(p1,....pN) =1 ({pi - pj}tij) - (1) Jet Tagglng

We benchmark the architecture on the popular task of top tagging, which is a binary classification task
with an open dataset of 1.2M simulated events [1]. PELICAN bests all non-permutation-equivariant
models and performs extremely well even when trained on only 0.5% of the training data.

The 15 aggregators of Eq,_,, for N =2, viewed as rank 4 binary tensors:

Similarly, equivariant observables that output a
Lorentz vector such as a 4-momentum can all be

written as
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tion). As a maximal generalization, a Message

Passing layer can be defined as Comparing top tagger performance |1, 3, 4|, we see that the PELICAN architecture achieves competi-

tive performance in terms of classification accuracy, area under the ROC curve (AUC) and background

Message Passing: T"Y = Ao M (T(f)) . rejection, and exhibits good training sample efficiency.

Here, M is a point-wise nonlinear map (“mes- Architecture | Accuracy | AUC | 1/eg (@ es =0.3) | #Parameters
2 c EFN 0.927 | 0.979 633 + 31 82Kk

sage forming”) shared between all nodes, and A EFP 0 939 0 980 384 Tk
is a general permutation-equivariant linear map- P-CNN 0.930 0.980 732 + 24 348k
ping (“aggregation”) acting on the particle in- PFN 0.932 0.982 891 + 18 32k
dices of T " ParticleNet 0.938 0.985 1298 + 46 498k
' ResNeXt 0.936 0.984 1122 + 47 1.46 M

TopoDNN 0.916 0.972 295 £ 5 59k

LorentzNet 0.942 0.987 . 2196 £ 173 224k

LGN 0.929 0.964 424 + 82 4.5k

PELICAN 0.931 0.981 695 + 31 100k

Reterences

1] G. Kasieczka and T. Plehn, SciPost Phys. 7, 014 (2019), arXiv:1902.09914 [hep-ph] .

2] H. Pan and R. Kondor, in AISTATS (PMLR, 2022) pp. 5987-6001.

3] A. Bogatskiy, B. Anderson, J. T. Offermann, M. Roussi, D. W. Miller, and R. Kondor (ICML, 2020) arXiv:2006.04780 .
4] S. Gong, Q. Meng, Zhang, et al., JHEP 07, 030 (2022), arXiv:2201.08187 [hep-ph] .

Depending on the task, the output layer will re-
quire an equivariant layer reducing the rank to
0 (e.g. classification) or 1 (e.g. to produce I in

(2)).
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