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Problem
Machine learning in physics faces a crisis of
model complexity and interpretability. The pri-
mary way of limiting these issues while reaching
great performance is by exploiting symmetries.
CNNs, by virtue of their translational equiv-
ariance, greatly reduced model complexity and
eased training. Similarly, permutation equivari-
ance is the cornerstone of graph network meth-
ods. These ideas can be applied to other physical
symmetries, such as the Lorentz symmetry and
particle permutations, to tackle tasks such as jet
tagging [1] and momentum reconstruction.

Lorentz Equivariance
If the inputs to our problem are a collection of
particles’ 4-momenta: 𝑝

𝜇

1, . . . , 𝑝
𝜇

𝑁
, then a funda-

mental theorem from classical Invariant Theory
lets us characterize Lorentz-invariant or equiv-
ariant observables of these particles. With per-
mutation invariance necessarily demanded, all
such observables are functions of only the pair-
wise dot products:

𝐼 (𝑝1, . . . , 𝑝𝑁 ) = 𝐼
(
{𝑝𝑖 · 𝑝 𝑗 }𝑖, 𝑗

)
. (1)

Similarly, equivariant observables that output a
Lorentz vector such as a 4-momentum can all be
written as

𝐸𝜇 (𝑝1, . . . , 𝑝𝑁 ) =
∑︁
𝑘

𝑝
𝜇

𝑘
· 𝐼𝑘 (𝑝1, . . . , 𝑝𝑁 ) , (2)

where each 𝐼𝑘 is a Lorentz invariant as in (1).

Permutation Equivariance
Permutation equivariance is a constraint on
mappings between arrays 𝑇𝑖1𝑖2 · · ·𝑖𝑟 of any rank 𝑟 ,
every index 𝑖𝑘 ∈ {1, . . . , 𝑁 } referring to a parti-
cle label, whereby permutations of the particles
“commute” with the map:

𝐹
(
𝜋 ◦𝑇𝑖1𝑖2 · · ·𝑖𝑟

)
= 𝜋 ◦ 𝐹

(
𝑇𝑖1𝑖2 · · ·𝑖𝑠

)
, 𝜋 ∈ 𝑆𝑁 . (3)

Graph Neural Networks explicitly implement
this constraint for rank 1 arrays (node informa-
tion). As a maximal generalization, a Message
Passing layer can be defined as

Message Passing: 𝑇 (ℓ+1) = 𝐴 ◦𝑀
(
𝑇 (ℓ)

)
.

Here, 𝑀 is a point-wise nonlinear map (“mes-
sage forming”) shared between all nodes, and 𝐴

is a general permutation-equivariant linear map-
ping (“aggregation”) acting on the particle in-
dices of 𝑇 .

Depending on the task, the output layer will re-
quire an equivariant layer reducing the rank to
0 (e.g. classification) or 1 (e.g. to produce 𝐼𝑘 in
(2)).

PELICAN Architecture
The bases of permutation-equivariant linear maps between tensors of arbitrary ranks can be found
in the related work [2]. For us the relevant cases are 2 → 2, 2 → 1 and 2 → 0, in which case
the dimensionalities are 15, 4, and 2, respectively. Some examples of the 2 → 2 maps include the
identity, 𝑇 ′

𝑖 𝑗 =
∑

𝑘 𝑇𝑘 𝑗 , 𝑇
′
𝑖 𝑗 = diag(𝑇 ), and 𝑇 ′ = 𝐼 · tr𝑇 , all illustrated below. Here, summation can be

replaced with any aggregation function (a symmetric function R𝑁 → R). Using the entire space of
permutation-equivariant aggregations allows for optimal expressivity while stabilizing the training.
Below is the architecture for a permutation-invariant task, but a permutation-equivariant architecture
as in (2) can be obtained simply by replacing the 2 → 0 layer with a 2 → 1 one.

The 15 aggregators of Eq2→2 for 𝑁 = 2, viewed as rank 4 binary tensors:
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Jet Tagging
We benchmark the architecture on the popular task of top tagging, which is a binary classification task
with an open dataset of 1.2M simulated events [1]. PELICAN bests all non-permutation-equivariant
models and performs extremely well even when trained on only 0.5% of the training data.
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Comparing top tagger performance [1, 3, 4], we see that the PELICAN architecture achieves competi-
tive performance in terms of classification accuracy, area under the ROC curve (AUC) and background
rejection, and exhibits good training sample efficiency.

Architecture Accuracy AUC 1/𝜖𝐵 (@ 𝜖𝑆 = 0.3) #Parameters
EFN 0.927 0.979 633 ± 31 82k
EFP 0.932 0.980 384 1k
P-CNN 0.930 0.980 732 ± 24 348k
PFN 0.932 0.982 891 ± 18 82k
ParticleNet 0.938 0.985 1298 ± 46 498k
ResNeXt 0.936 0.984 1122 ± 47 1.46M
TopoDNN 0.916 0.972 295 ± 5 59k
LorentzNet 0.942 0.987 . 2195 ± 173 224k
LGN 0.929 0.964 424 ± 82 4.5k
PELICAN 0.931 0.981 695 ± 31 100k
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