
Embed hits to 8D 
hidden space via MLP Similarity search
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In this study, we apply a GNN-based tracking algorithm on large radius 
tracks dataset. Our pipeline reconstructs prompt and displaced tracks 
simultaneously. We obtained a high tracking efficiency as a function of        
and       . We will further improve the pipeline by exploring different GNN 
architectures and study its robustness with different physical processes.

Long-lived particles are predicted by many 
beyond Standard Model theories such as 
SUSY. They have relatively long lifetime, travel 
a distance before decaying to other particles, 
resulting in large radius tracks. Traditional 
algorithms based on the Kalman filter require a 
large computing cost and dedicated tuning for 
finding such type of tracks.

Result

Embedding
A MLP with 512 units and 6 
layers is trained to embed 
input spacepoint features.

A MLP with 512 units and 5 
layers is trained to prune 
away fake edges.

An attention GNN is trained to 
output a score for each edge.

Mark (1 - edge score) as 
distance and perform DBSCAN 
[5] to get track candidates.
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Long Lived Particles Physical Process and Dataset

Graph Neural Network

We generate simulated data with ACTS [1]  (the 
TrackML geometry) without pileup focusing on 
the Heavy Neutral Lepton process [2]: 

  
where    represent heavy neutral lepton (HNL) 
with mass of 15 GeV and lifetime of 100 mm. 
All tracks are included in the training. Only 
prompt and displaced muons are included in 
the testing.

The Exa.TrkX Pipeline

Filter GNN Track Reconstruction

GNN Edge Score Tracking Efficiency
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True edges are those connecting hits from the same track. We use 
Graph Attention Network [3] to score those edges. EdgeNet 
outputs edge scores, which are then used to weight node features 
in message passing steps.
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Conclusion

GNN area under curve (AUC) for prompt and displaced tracks are 
0.988 and 0.986, respectively. No significant reduce in 
performance for displaced tracks is observed.

True muon tracks containing a number of hits larger than five are considered as 
reconstructable. The tracking efficiency is defined as the ratio of reconstructable 
true tracks being matched (50% of double majority [6]) to at least one 
reconstructed track. Prompt and displaced muons are reconstructed 
simultaneously.

Robustness
To search HNLs using the pipeline, robustness of different HNL mass and 
lifetime configurations are required. We apply trained model on different HNL 
dataset and no significant different is observed.

Generic Graph Construction
In a graph, nodes are hits recorded by the tracker, edges are connections 
between hits. We use an embedding model (Multilayer Perceptrons, MLPs) and 
similarity search to construct graphs, i.e. constructing edges from point clouds 
[4]. This method makes no assumption on production vertex position.


