Difference of measured proton and He3 EDMs: reduced systematics test of T-reversal Invariance

Richard Talman Laboratory for Elementary-Particle Physics Cornell University, Ithaca, NY, US,

Snowmass, Seattle, 2022 Meeting

2 Outline

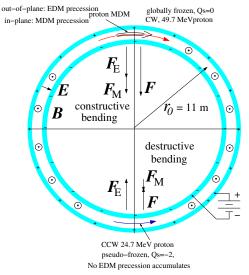
Simultaneous counter-circulating, frozen spin proton beams in MDM comparator ring $\ensuremath{\mathsf{PTR}}$

Proposed proton EDM Prototype, COSY, Juelich, Germany

Distortion-free, Quadrupole-free, Doubly-magic, Two-way Toroidal Optics

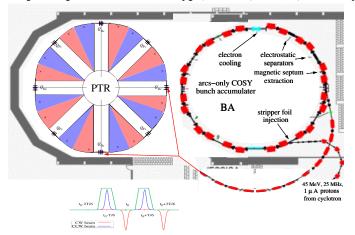
Proposed proton, He3 EDM difference measurement at BNL

Cancellation of proton/He3 systematic Error

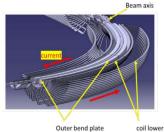

Gyroscopic Phase-locked CW/CCW Reversal

Counting Statistics

Systematic Error


Extra material

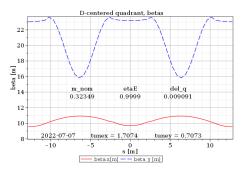
Simultaneous counter-circulating, frozen spin proton beams in MDM comparator ring PTR


▶ The EDM signature is "out-of-plane" precession of the MDM

Proposed proton EDM Prototype; COSY, Juelich, Germany

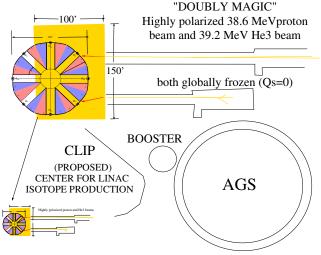
- Stripper foil injection from cyclotron, bunch acccumulation and rebunching occurs in BA
- ► Polarized bunch pairs are transferred to PTR in successive injection cycles

PTR



Toroidal two-way frozen spin storage ring CW: 49.7 MeV "magic", Qs=0, protons, EDM signal CCW 24.7 MeV pseudo-frozen, Qs=-2, no EDM signal

Table 1. PTR and COSY-a	arcs-only	bunch a	accumulator (BA)	parameters
file name	variable	unit	BA	PTR
	name		COSY-arcs-only	
circumference	circum	m	102.250	102.250
bend radius	r0	m		11.0
E field., 30 MeV proton.	E	MV/m		5.370
long straight length	llsnom	m		4.142
totol available straight	$16{\times} llsh$	m		32
electrodes/quadrant				4
bend/electrode	Thetah	radian		$2\pi/16$
electrode length	Leh	m		4.32
PTR stored p's no BA				0.6×10^{7}
COSY-arcs-only BA			0.6×10^{11}	0.6×10^{11}
min/max horizontal beta	β_x	m		9.60/10.83
min/max vertical beta	β_y	m		16.6/24.8
horizontal tune	Q_x			1.726
vertical tune	Q_{v}			0.673


- ▶ Left: Two-way, toroidal, thick-lens, "MDM Comparator" storage ring
- ▶ **Right:** Parameters of EDM prototype PTR.

Distortion-free, Quadrupole-free, Doubly-magic, Two-way Tororoidal Optics

- Electric/magnetic superimposed, "MDM comparator" optics
- Astigmatically-corrected, thick lens, toroidal optics
- ► Nearly identical forward and backward optics: vertical exact, horizontal perturbative
- ► Running on sum resonance (equal fractional tunes), all spin decoherence modes canceled; long SCT
- "No guads" allowed, (except for trimming)

Proposed proton, He3 EDM difference measurement at BNL

The dominant systematic error cancels in the difference EDM[proton] – EDM[He3]

- ► EDM signature: out-of-plane MDM precession
- ▶ Dominant systematic error: radial magnetic field error acting on MDM mimics electric field acting on MDM
- For the proton-He3 combination, measure $\Delta = \text{EDM[proton]-EDM[He3]}$
- Systematic error cancels.
- Non-zero Δ implies BSM physics

9 Gyroscopic Phase-locked CW/CCW Reversal

- Reversing CW/CCW requires reversing the magnetic field
- Setting, reversing, and resetting magnetic field with frequency domain accuracy relies only on MDMs acting as magneto sensing gyroscopes
- This avoids need for (unachievably precise) magnetic field measurement
- while allowing systematic error reduction averaging over CW/CCW reversal

Counting Statistics

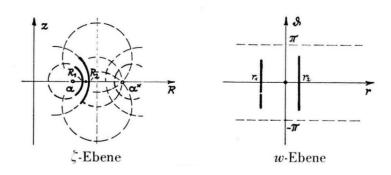
Run length = nominal week = $2x10^5$ seconds

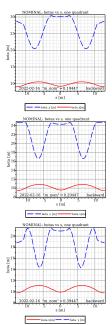
$$\sigma_{\text{stat}} = +/-10^{-29}$$
 e cm, in all cases

i.e. counting statistics error can "always" be neglected for runs of one week or longer

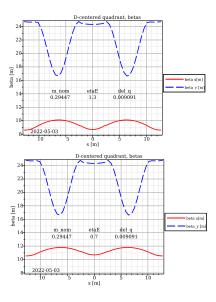
11 Systematic Error

run sequencing	consecutive	concurrent	concurrent	Δ
	singly magic	singly magic	doubly magic	p-He3
	$\pm \sigma_{\rm syst.}$	$\pm\sigma_{ m syst.}$	$\pm \sigma_{ m syst.}$	difference
	e cm	e cm	e cm	e cm
single run	10^{-26}	10^{-27}	10^{-28}	
polarization reversal	0.5×10^{-26}	0.5×10^{-27}	0.5×10^{-28}	
CW/CCW reversal	10^{-27}	10^{-28}	10^{-29}	$< 10^{-29}$


12 Extra material


THANKS FOR YOUR ATTENTION

13 Koop menu of counter-circulating nuclear options


			-		
Nuclei	m, GeV/c ²	J	μ	a	
p	0.938272	1/2	2.792847351	1.792847	
d	1.8756123	1	0.8574376	-0.142988	
Li6	5.601518	1	0.8220473	-0.182058	
Li7	6.533833	3/2	3.2564268	1.519638	
He3	2.808391	1/2	-2.12762485	-4.191437	
C13	12.10948	1/2	0.7024118	0.510906	

14 Albrecht conformal mapping derivation of toroidal optics

