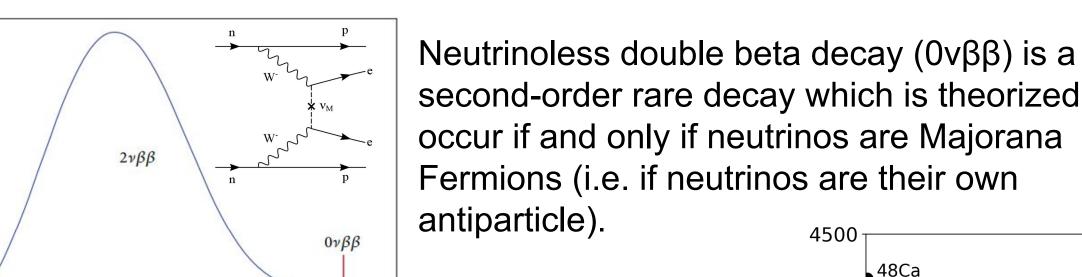


Toward CUPID-IT

Virtual Poster #69 Contact information:

Erin V Hansen evhansen@berkeley.edu

Danielle Speller dspelle1@jhu.edu

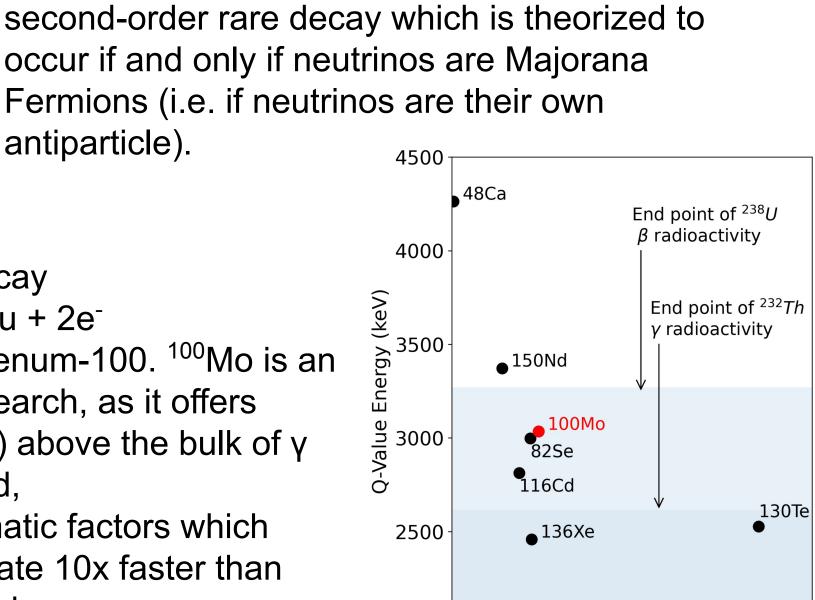


JOHNS HOPKINS

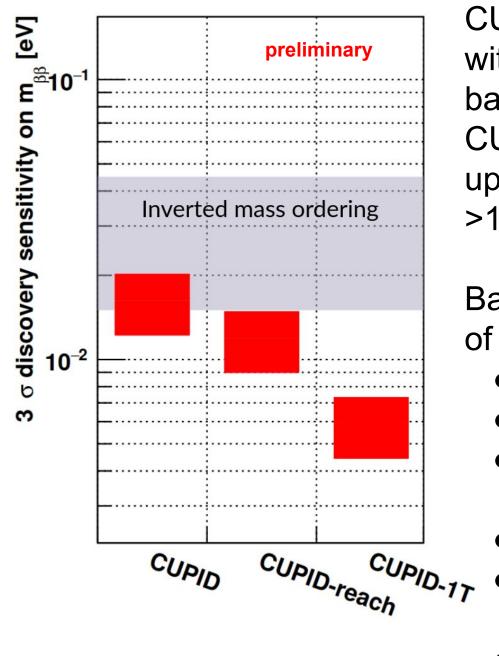
Counts

Erin V. Hansen & Danielle Speller for the CUPID Collaboration

Neutrinoless Double Beta Decay with CUPID



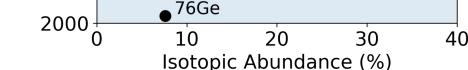
Total electron energy In CUPID, we will use the decay


 $^{100}Mo \rightarrow ^{100}Ru + 2e^{-1}$

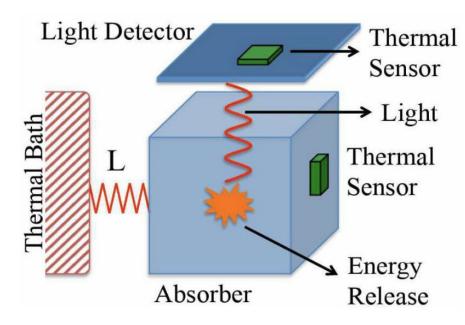
to search for $0\nu\beta\beta$ in molybdenum-100. ¹⁰⁰Mo is an excellent candidate for this search, as it offers

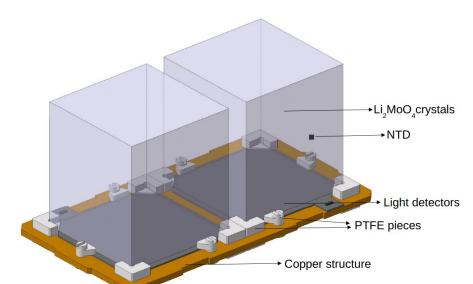
- a high Q-value (3034 keV) above the bulk of γ environmental background,
- favorable nuclear & kinematic factors which yield an expected decay rate 10x faster than other leading isotopes, and ease of embedding into scintillating crystals.

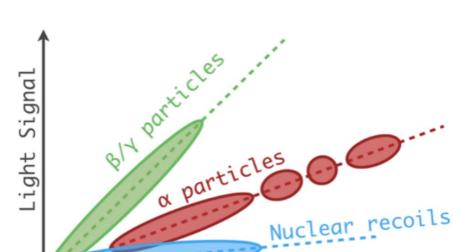
Research and Development towards CUPID-1T



CUPID-Reach relies on the same CUPID infrastructure with updated analysis tools for a 5x reduction in background.


CUPID-1T would host 4x the mass of CUPID using updated technology, including multiplexed readout for >10k channels.


Background can be realistically 20x reduced to the level of 5 x 10^{-6} ckky by


- materials screening & radiopurity,
- improved timing resolution of TES-based detectors,
- passive reduction and active veto for elimination of surface backgrounds,
- further purification of LMO crystals,
- cleaner cryogenic shields for reduction of γ backgrounds, and
- reconstruction of $0\nu\beta\beta$ event topology.

CUPID: CUORE Upgrade with Particle IDentification

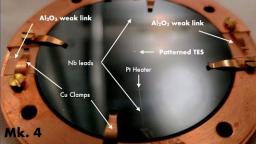
CUPID-1T datataking)

CUPID will use the same cryogenic infrastructure as CUORE at the Laboratori Nazionali del Gran Sasso in Italy.

1596 Li₂MoO₄ cryogenic calorimeters will be instrumented with NTD thermistors for heat signal read out. Each crystal will be $45 \times 45 \times 45 \text{ mm}^3$, corresponding to a mass of ~280 g each and enriched to >95% 100 Mo for a total of 240 kg 100 Mo.

Each LMO crystal will also face two Ge light detectors, instrumented with NTDs (a total of 1710 light collectors).

The addition of a photon signal allows for rejection of α backgrounds — CUPID-0 [1] and CUPID-Mo [2] have demonstrated this technique with a success rate of >99%.


Target energy resolution (ΔE) of 5 keV FWHM at Q-value (3034 keV). Target background index of b = 10^{-4} ct/keV/kg/yr.

Energy[MeV]

Parameter		CUPID-Baseline	CUPID-Reach	CUPID-1T
Crystal	preliminary	Li ₂ ¹⁰⁰ MoO ₄	Li ₂ ¹⁰⁰ MoO ₄	Li ₂ ¹⁰⁰ MoO ₄
Detector mass (kg)	preminary	450	450	1871
¹⁰⁰ Mo mass (kg)		240	240	1000
Energy resolution FWHM (keV)		5	5	5
Background index (counts/(keV·kg·yr))		10 ⁻⁴	2 x 10 ⁻⁵	5 x 10 ⁻⁶
Containment efficiency		78%	78%	78%
Selection efficiency		90%	90%	90%
Livetime (years)		10	10	10
Half-life exclusion sensitivity (90% C.L.)		1.4 x 10 ²⁷ y	2.2 x 10 ²⁷ yr	9.1 x 10 ²⁷ yr
Half-life discovery sensitivity (3σ)		1 x 10 ²⁷ y	2 x 10 ²⁷ y	8 x 10 ²⁷ yr
m _{ββ} exclusion sensitivity (90% C.L.)		10–17 meV	8.4–14 meV	4.1–6.8 meV
$m_{\beta\beta}^{\beta\beta}$ discovery sensitivity (3 σ)		12–20 meV	9–15 meV	4.4–7.3 meV

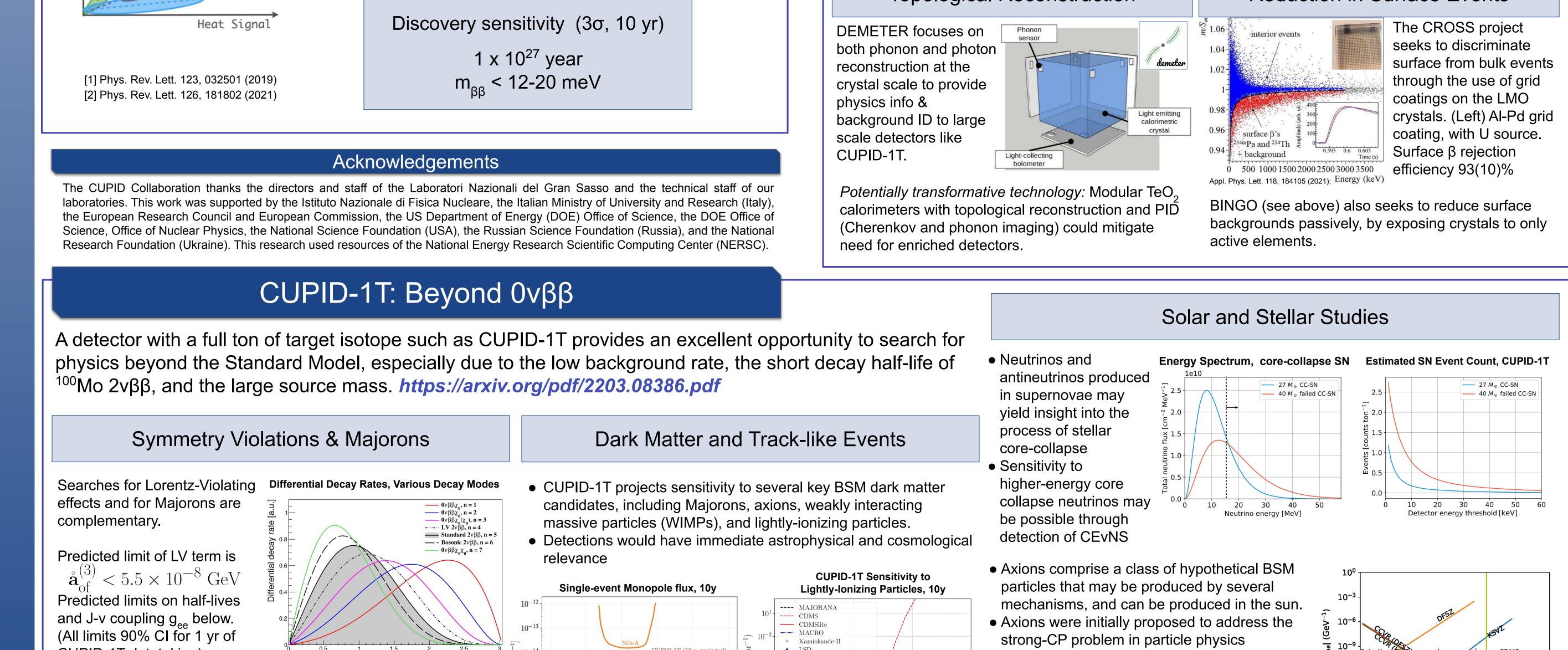
Superconducting Sensors

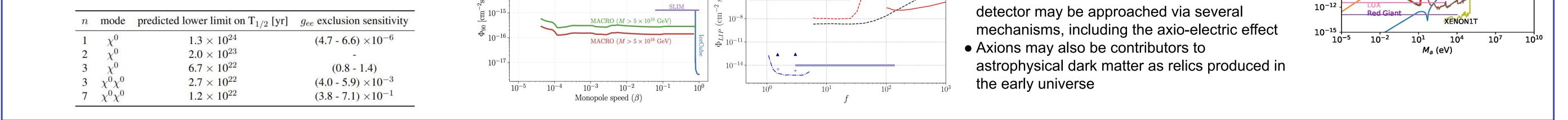
Requirements include fast timing resolution and multiplexed readout for >10k channels.

Low-impedance TES Production is easy to scale, & compatible with multiplexing.

• Detection of axions in tonne-scale calorimetric

Energy resolution = 100 eV Timing resolution = $10 \mu sec$ ennings-Yeomans et.al. Journal of Applied Physics 128, 154501 (2020)


MKIDs: Natively pairs with frequency MUX through tuning of individual devices. Ongoing work of CALDER. Noise RMS = 90 eV (vibration dominated) Risetime = 120 µsec Cardani et.al. Eur. Phys. J. C 81, 636 (202


Topological Reconstruction

Αςιίνε γ νείο				
Scintillator (2nWOq) (1) <t< th=""><th>BINGO (Bi-Isotope 0v2β Next Generation Observatory) is a demonstrator experiment which developed an internal cryogenic active shield based on ZnWO₄ or BGO scintillators. Encouraging results for both LMO and TeO₂ source crystals.</th></t<>	BINGO (Bi-Isotope 0v2β Next Generation Observatory) is a demonstrator experiment which developed an internal cryogenic active shield based on ZnWO ₄ or BGO scintillators. Encouraging results for both LMO and TeO ₂ source crystals.			

Reduction in Surface Events

Active v Veto

CUPID-1t (10y Projected)

▲ LSD