Searching for rare processes in short-baseline neutrino experiments with liquid argon time projection chambers

Guanqun Ge\(^1\) on behalf of MicroBooNE and SBND Collaborations
\(^1\)Columbia University gg2690@columbia.edu

Liquid Argon Time Projection Chamber

Liquid argon time projection chamber (LArTPC)\(^1\) detector offers:
- Unprecedented spatial and calorimetric resolution
- Scalability and high cost-efficiency

The readout of LArTPC can be viewed as a 2D time-space image

Ecological foot-print

The Short-Baseline Neutrino Program\(^2\)

Comprises three LArTPC detectors: SBND (near detector), MicroBooNE and ICARUS (far detector)
- Main Physics goal:
 - Search for light sterile neutrino oscillations
 - Measure neutrino-argon cross-sections
 - Beyond-Standard Model (BSM) physics searches

Searches for SM-predicted, rare neutrino scattering processes

Neutrino Current \(\Delta\) radiative decay search in MicroBooNE\(^3\)

MicroBooNE investigated hypothesis of enhanced neutral current (NC) \(\Delta \rightarrow N + \gamma\) as source of LEE seen by MiniBooNE\(^4\)
- Never before measured process
- 3.18 enhancement could account for the \(\gamma\) source of LEE seen by MiniBooNE

NC coherent single photon search in MicroBooNE\(^5\)

Neutrino-induced NC coherent 1\(\gamma\) production is a rare, never before measured but SM predicted process \(^6\)
- O(10) events expected in MicroBooNE for first three runs
- No hadrons exiting the nucleus in the final state but only one photon

Challenges

Very rare signal - 125 events expected for first three run periods

5 tailored boosted decision trees (BDT’s) to remove cosmic, charged current and NC \(\pi^0\) background

Dedicated high-statistics NC \(\pi^0\) sample to constrain NC \(\pi^0\) rate in-situ

Searches for BSM single-photon-like processes

Ongoing searches in MicroBooNE and SBND that look for single-photon-like activity:
- Exotic e\(e^\pm\) production through light dark photon mediated neutrino scattering \(^7\)
- Single photon production from heavy neutrino due to transition magnetic moment \(^8\)
- Both searches are made possible by the DarkNews event generator\(^9\)

Predicted e\(e^\pm\) signal for MicroBooNE\(^8\) corresponding to e\(e^\pm\) model parameters which best fits MiniBooNE reconstructed visible energy: \(m_\nu = 1.25\, GeV, m_\psi = 107.5\, MeV, m_\chi = 72\, MeV, \varepsilon = 0.01\)

MicroBooNE and LAr1-ND and ICARUS-WA104 Collaborations, arXiv:1503.01520

Current efforts are ongoing to evaluate the sensitivity of MicroBooNE and SBND to these models

MicroBooNE and LAr1-ND and ICARUS-WA104 Collaborations, arXiv:1503.01520

[6] A. Abdullahi, Neutrino 2022 poster