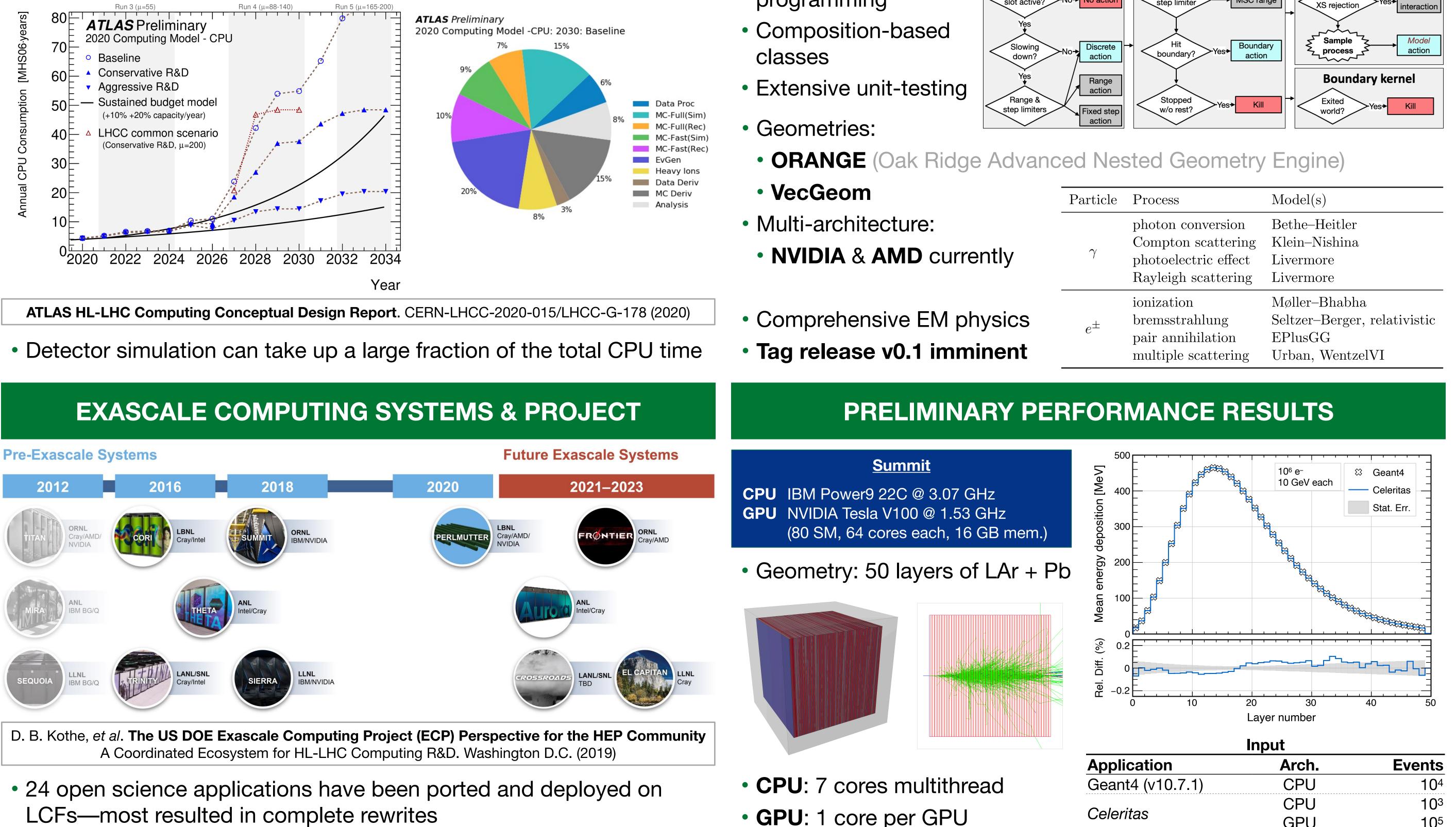
Celeritas: HEP detector simulation on GPUs

S. C. Tognini, S. R. Johnson and T. M. Evans

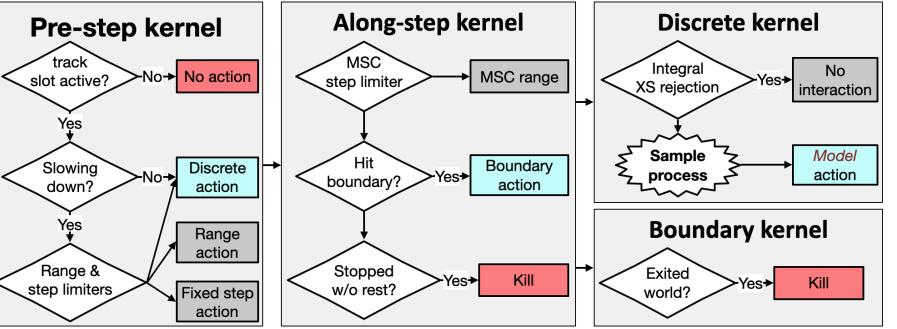
P. K. Romano and A. L. Lund

P. Canal, G. Lima and S. Y. Jun

Oak Ridge National Laboratory Argonne National Laboratory Fermi National Accelerator Laboratory


Brookhaven National Laboratory V. R. Pascuzzi

arXiv


MOTIVATION

<u>Unprecedented computing demand on both HL-LHC and DUNE</u>

CODE ARCHITECTURE & PHYSICS

- Data-oriented programming

Particle	Process	Model(s)
	photon conversion	Bethe-Heitler
•	Compton scattering	Klein–Nishina
ŕγ	1 1	т.

• ExaSMR: Coupled Monte Carlo Neutronics and Fluid Flow Simulation of Small Modular Reactors

Wall time per primary Mean (ms) **Application** Geo. Arch.

• Summit: 1 GPU = 160 CPU cores^{\dagger}

[†]S. P. Hamilton, et al. Continuous-energy Monte Carlo neutron transport on GPUs in the Shift code Annals of Nuclear Energy, vol. **128**, pp. 236–247 (2019)

IMPACT

- Celeritas is designed to take full advantage of DOE LCFs
- ORNL alone is home of both Summit and Frontier
- If *Celeritas* reaches a CPU to GPU factor of 160 (such as ExaSMR)
- Summit: 27,648 GPUs \rightarrow 4,423,680 CPU cores
- The Worldwide LHC Computing Grid (WLCG) had ~500,000 CPU cores in 2017⁺⁺
- Summit can reach an equivalent computing power of 8 WLCG

****** A Roadmap for HEP Software and Computing R&D for the 2020s. Comput. Softw. Big Sci. 3, 7 (2019)

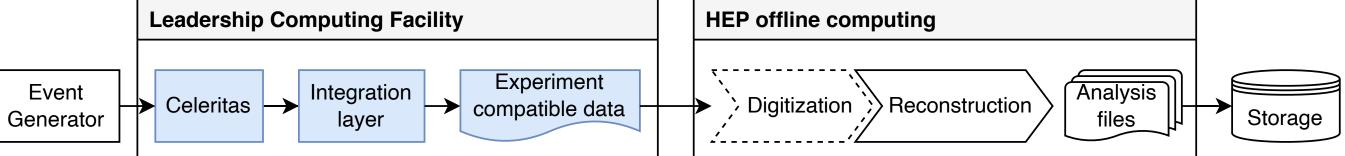
Celeritas per-node performance

- ~40× faster on GPU
- 1 GPU = \sim 280 CPU cores

			<u> </u>
Geant4 (10.7.1)	Geant4	CPU	2.9 ± 0.1
	ORANGE*	CPU	2.09 ± 0.02
Coloritoo		GPU	0.046 ± 0.001
Celeritas	VecGeom	CPU	1.95 ± 0.04
		GPU	0.0627 ± 0.0004

GPU

10⁵


New preliminary results; **NOT** published yet

*Oak Ridge Advanced Nested Geometry Engine

EXPERIMENT INTEGRATION

- Working with experiments to provide a proof-of-principle workflow
- Acceleritas: Geant4-Celeritas hybrid that offloads EM physics to GPU

Celeritas code	HEP offline computing	HEP offline computing	
	Event Geant generator Acceleri	>> Digitization >> Reconstruction > 1	Storage
Leadership Com	puting Facility	HEP offline computing	7

ACKNOWLEDGEMENTS

Work for this paper was supported by Oak Ridge National Laboratory (ORNL), which is managed and operated by UT-Battelle, LLC, for the U.S. Department of Energy (DOE) under Contract No. DEAC05-000R22725 and by Fermi National Accelerator Laboratory, managed and operated by Fermi Research Alliance, LLC under Contract No. DE-AC02- 07CH11359 with the U.S. Department of Energy (Fermilab publication number for this paper is FERMILAB-FN-1159-SCD). This research was supported by the Exascale Computing Project (ECP), project number 17-SC-20-SC. The ECP is a collaborative effort of two DOE organizations, the Office of Science and the National Nuclear Security Administration, that are responsible for the planning and preparation of a capable exascale ecosystem – including software, applications, hardware, advanced system engineering, and early testbed platforms - to support the nation's exascale computing imperative. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the

Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-000R22725.

