

Robert J. Wilson Colorado State University for the SBN Program

Short-Baseline Neutrino (SBN) Program Science

- Anomalous MiniBooNE Events
 - Investigate source(s) of low-energy excess (LEE) events observed by MiniBooNE using LArTPCs
- Search for Sterile Neutrinos
 - Discovery or definitive exclusion of 1 eV—scale sterile neutrino mass region motivated by LSND and MiniBooNE results
 - Provide verification or refutation of the Neutrino-4 experiment's* evidence for a 7.3 eV², large mixing angle, sterile neutrino
- Neutrino Interactions in Argon
 - Millions of v_u and tens of thousands of v_e from two neutrino beams
- Search for Beyond Standard Model Physics
 - Higgs portal dark scalar, large extra dimension models, Lorentz/CPT symmetry violation, non-standard interactions, dark neutrino sectors, etc.

*Serebrov, A.P., et al. Phys. Atom. Nuclei 83, 930–936 (2020)

SBN Complex at Fermilab

SBN Complex at Fermilab

Booster Neutrino Beam (BNB)

R.J.Wilson/CSU

- 8 GeV protons from Booster
 - Beryllium target; horn pulsed at 170 kA
 - Up to 5 Hz and 5 x 10¹² protons per pulse, 1.6 μs spill
- SBN Detector interaction rates
 - SBND: 0.25 Hz ν , 0.03 Hz cosmic
 - ICARUS: 0.03 Hz ν , 0.14 Hz cosmic

(+ NuMI: 0.014 Hz ν , 0.08 Hz cosmic)

SBN Beam Projections

- Two-decades of neutrino production ⇒ a well understood beam that typically achieves near "design"
- SBN Proposal: 6.6 x 10²⁰ POT
- BNB will operate until LBNF long-shutdown ~Jan. 2027 ⇒ with design POT delivery
 - ICARUS > 3X original SBN proposal
 - ICARUS+SBND > 2X original SBN proposal

SBN Far Detector: ICARUS-T600

- Two identical modules (T300) each is 19.6 x 3.6 x 3.9 m³; total LAr mass 760 t; active mass 476 t
- Drift distance 1.5 m. Electric field 500 V/cm -> drift time ~1 ms
- 3 signal wire planes (2 induction + 1 collection); total 53,248 wires; new readout electronics
- Pitch and inter-plane distances: 3 mm; 400 ns sampling time
- New photon detector system 360 TPB-coated PMTs
- New cosmic ray tagger $\sim 4\pi$ coverage, 1100 m² plastic scintillator

ICARUS-T600 at Fermilab

Aug. 2020: start of TPC/PMT operation

Dec. 2021: CRT installation complete

June 2022: overburden complete

Steady data taking with BNB, NuMI beams since March 2021, in parallel with commissioning activities. Cosmics, v_u , and v_e samples collected for trigger/calibration/reconstruction studies.

BNB CC QE muon neutrino candidate, E_{DEP} ~ 200 MeV

Data taking for Physics with BNB and NuMI beams 9 June 2022

Contained NuMI CC QE electron neutrino candidate, EDEP ~ 800 MeV

SBN Near Detector: SBND

- Ground-up new detector 4 m x 4m x 5m, 112 t active mass LAr
- Incorporating technology important for DUNE (cryostat, 2-m drift TPC, X-Arapuca photon detectors)

Short-Baseline Near Detector (SBND)

Milestone: Installation complete and ready to fill in June 2023

Example oscillation at BNB peak energy

P. Machado et al., arXiv:1903.04608V11 https://doi.org/10.1146/annurev-nucl-101917-020949

• Multiple detectors using the same technology enables sensitive searches for $\nu_{\rm e}$ appearance and $\nu_{\rm u}$ disappearance within the same experiment

Sensitivity Plots Based on SBN Proposal

P. Machado, O. Palamara D. Schmitz, arXiv:1903.04608V11 https://doi.org/10.1146/annurev-nucl-101917-020949

SBN Oscillation Sensitivity - Update

SBN Preliminary – as-built detector size/position, more realistic systematics, etc. – work in progress

• SBN sensitivities for 6.6 x 10²⁰ protons on the BNB target; will be updated to the larger dataset

SBN Oscillation Sensitivity - NEW

Direct probe of $sin^22\theta_{ee}$ using a neutrino beam rather than lower energy (MeV) reactor antineutrinos

- $^{\sim}$ ~35,000 intrinsic. $\nu_{\rm e}$ at SBND for 6.6 x 10 20 BNB POT
- ICARUS will use v_e disappearance from NuMI as part of Neutrino-4 signal investigation

Cross Section Measurements

SBND High-statistics measurements of many signatures and can observe rare channels such as heavy baryons (Λ^0 , Σ^+), NC coherent single photon production, etc.

ICARUS can leverage its off-axis position in the NuMI beam and observe a v_e enriched flux for v_e-Ar measurements

SBN cross section measurements will inform cross section theory & generator work, and lay groundwork to lower the systematic uncertainties for current and future high-precision experiments such as DUNE.

ICARUS/SBN Outlook

- ICARUS operated well in commissioning mode and has begun first physics run
- SBND is on track for operation in late 2023
- ICARUS will reach nominal dataset by mid-2024 and ICARUS+SBND by late 2025
 - 2-3X higher statistics by 2027
- The SBN program will provide a broad spectrum of neutrino and BSM physics and in-depth experience with LArTPC technology and analysis through to the start of DUNE program

Thank you

Questions?

Search for Neutrino-4 Oscillation signal with ICARUS

- The Neutrino-4 collaboration claim a reactor neutrino disappearance signal with a clear modulation with L/E
 ~1-3 m/MeV
- ICARUS has sensitivity to this parameter space as a single-detector and is planning an oscillation analysis investigating the Neutrino-4 signal using data taken in the coming year (prior SBND operations)

R.J.Wilson/CSU

- ICARUS will do analyses in two independent channels using different neutrino beams
 - v_u disappearance using the BNB
 - v_e disappearance using NuMI

Updated Sensitivity Plots – v_e appearance

Updated Sensitivity Plots – v_e disappearance

Updated Sensitivity – v_{μ} disappearance

SBND: Sampling multiple off-axis fluxes with the same detector

- SBND is located very close to the beam target (110 m) and slightly off-axis (~74 cm), so the detector sees a different flux based on position within the detector
 - Similar to the DUNE-PRISM concept, but with a fixed detector

- Ongoing studies exploring physics potential of flux sampling
 - improve flux and cross section constraints in oscillation analysis
 - targeted cross section analyses with detector slices to constrain nuclear effects
 - reduced backgrounds for increasing off-axis angles
 - add capabilities for BSM searches

SBN Oscillation Sensitivity - Update

SBN Preliminary – Includes more realistic systematics, detector positions etc. – work in progress

