Current State of Low-Energy
Neutrino Physics in US-HEP

July 18, 2022

Bryce Littlejohn

lllinois Institute of Technology

A\



Talk Overview

® Charge: overview the recent achievements and present state of
the ‘low-energy’ part of the US-HEP community

® |f today’s talks were Roald Dahl

school book reports: MATTLDA

® Previous talks Qﬁg@ﬁwﬁﬁe

in this session:

® Advance apology for speeding through your experiment/topic!
® |t turns out there’s a lot of recent ‘low-energy’ activity in US-HEP...

® Also, line between ‘US’ and ‘non-US’ is fuzzy (US based? US supported?) and |
will not attempt to define or use a consistent definition in this talk



NFO04/NF09:What Is ‘Low-Energy’?

Looking below 100 MeV, what sources have we been sensitive
to in the last P5 period with the US neutrino program?

Artificial sources (NFQ09):

® Accelerator decay-at-rest neutrinos
Zeller and Formaggio, Rev. Mod. Phys. 84 (2012)

® Nuclear reactors 5 1
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® Non-V measurements:
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® | ow-energy detection Neutrino Energy (eV)
plays an important role for higher-energy neutrino sources too! 3



https://arxiv.org/abs/1305.7513

NF10: Low-Energy Detectors i[

® A wide dynamic range of signals from the sub-keV to |0s of
MeV necessitates a use of diverse detection technologies

® Organic / inorganic / noble element scintillation detectors
e Captain-Mills, CHANDLER, COHERENT, Daya Bay, JUNO, KamLAND-Zen, PROSPECT, SNO+, ...

® Solid-state ionization detectors

® Majorana, reactor CEVNS, etc.

® Bolometers
® CUORE, reactor CEVNS, etc.

® Time Projection Chambers Underline = US-based
o EXO,SBN/MicroBooNE, ArgoNeuT, etc.

® Cherenkov Detectors
o ANNIE, Super-K, etc.

® FElectrostatic, CRES Spectrometers
e KATRIN, Project8

® |ndicates that future progress for low-energy US-HEP requires
broad/diverse detector R&D initiatives.



NFOI|: Neutrino Oscillations

V

° Low-eneriy neutrinos are the
source of best precision on
many standard model neutrino
flavor mixing parameters

® Recently:

e Daya Bay reactor experiment
greatly improved its 2012

first measurement of 93

® Super=-K’s recent improved
solar analysis shifted/tightened

its AmZ2|; parameter bounds

® Minor US support for impending
JUNO reactor experiment,
which aims for major
improvements in 812, Am23,
mass hierarchy knowledge

K. Luk (Daya Bay), Neutrino 2022
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https://indico.fnal.gov/event/43209/contributions/187863/attachments/129474/159089/nakajima_Neutrino2020.pdf
https://indico.kps.or.kr/event/30/contributions/868/attachments/160/343/Kam-Biu%20Luk.pdf
https://indico.kps.or.kr/event/30/contributions/878/attachments/170/363/Thomas%20Schwetz-Mangold.pdf

NF02: Neutrino Anomalies

® T[hree of the four ‘canonical’ short-baseline anomalies exist
in the low-energy regime: the Reactor, Gallium,and LSND

e Recently: PROSPECT, hep-ex[2107.03934]
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the suggested Anomaly space

e Daya Bay, PROSPECT improved i

knowledge of reactor v models, e
another possible source of
the Reactor Anomaly

e KATRIN, other US-NP efforts §

(i.e. BeEST) set complimentary
new active-sterile coupling limits at .

even higher Am2, i
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® Limited yet essential US support

for JSNS, which is now taking data
to directly address LSND at JPARC
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https://arxiv.org/abs/2107.03934

NFO3: BSM \ i

® | ow-energy experiments, just like hl%h energy experiments,
have hopped aboard the Neutrino BSM train.

ArgoNeuT PRL |24 (2020)
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® There are more low-energy
BSM signatures searches than
| can name in one slide. _
Let me try a few: w

e ArgoNeuT: Millicharged particles

Millicharge search ;

1.0x10%° POT -

... ArgoNeuT |

103 104

my (MeV. CONNIE, JHEP 54 (2020)

o CAPTAIN-Mills, COHERENT:
Accelerator—produced dark
sector particles

. 0.010
o COHERENT: NSI parameter limits 0.005 |
e CONNIE: |
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https://arxiv.org/pdf/1911.07996.pdf
https://arxiv.org/abs/2105.14020
https://arxiv.org/abs/2205.12414
https://arxiv.org/abs/2110.07730
https://arxiv.org/abs/1910.04951
https://arxiv.org/abs/1209.5810
https://arxiv.org/abs/1809.04660
https://arxiv.org/abs/1608.01661
https://arxiv.org/abs/2104.11219
https://arxiv.org/abs/1911.07996
https://arxiv.org/abs/1910.04951

NFO5: Neutrino Properties

® The neutrino’s absolute mass and Dirac/Majorana nature are
probed in nuclear decays at the MeV scale and below

® Recent:

¢ CUORE, EXO, Majorana, KLZ |imits on the effective neutrino mass are
marching ever closer to or are breaking into the inverted hierarchy regime; big
R&D questions for future ton-scale experiments have been answered.

® KATRIN has pushed its direct neutrino mass limit below | eV, and first
phases of next-gen CRES technology R&D by Project8 have been done

KATRIN, Nature Physics 18 (2022) % [ . & ¥ & ¥
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https://indico.kps.or.kr/event/30/contributions/867/attachments/159/342/Stefan%20Sch%C3%B6nert.pdf
https://www.nature.com/articles/s41567-021-01463-1

NFO06: Neutrino Cross-Sections W
e ArgoNeuT, MINERVA, ANNIE: COHERENT.PRL 126 (2021)
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https://arxiv.org/abs/2003.10630
https://link.aps.org/doi/10.1103/PhysRevD.100.052002
https://arxiv.org/abs/1911.07996
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® V.-based reactor monitoring: a go-to response when a layman

asks ‘What are neutrinos good for?’

¢ CHANDLER and PROSPECT have

demonstrated on-surface V. detection
with plastic and liquid scintillators

® This milestone has generated interest,

development in near-field monitoring tech

® | ow energy analyses have also
furthered development of US
Al/ML expertise via HEP research

® Just a few examples:

¢ ArgoNeuT:finding <200keV
signals in LArTPC images

o KamLAND-ZEN: picking out
Onubb candidates from background
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https://arxiv.org/abs/2103.06391
https://arxiv.org/abs/2203.01870
https://arxiv.org/pdf/2006.11210.pdf
https://arxiv.org/abs/1812.02163

N
Summary \//

® Experiments observing neutrinos and neutrino-related physics
below ~100 MeV have yielded many high impact discoveries
and observations for US HEP in the past 10 years

® The scope of physics delivered by low-energy neutrino
experiments has been broad, touching each of the Neutrino
Frontier topical groups for Snowmass 202 1/2022

® While this talk focused on present achievements, many CSS
talks and Snowmass Reports/Whitepapers will explain exciting
prospects for low-energy physics during the next P5 period.
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My school report:
e The books were all great,
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