# Current State of Low-Energy Neutrino Physics in US-HEP

July 18, 2022

Bryce Littlejohn
Illinois Institute of Technology



#### Talk Overview



- Charge: overview the recent achievements and present state of the 'low-energy' part of the US-HEP community
- If today's talks were school book reports:
  - Previous talks in this session:





- This Talk:
- Advance apology for speeding through your experiment/topic!
  - It turns out there's a lot of recent 'low-energy' activity in US-HEP...
  - Also, line between 'US' and 'non-US' is fuzzy (US based? US supported?) and I
    will not attempt to define or use a consistent definition in this talk

# NF04/NF09: What Is 'Low-Energy'?



- Looking below 100 MeV, what sources have we been sensitive to in the last P5 period with the US neutrino program?
- Artificial sources (NF09):
  - Accelerator decay-at-rest neutrinos
  - Nuclear reactors
- Natural Sources (NF04:)
  - Solar neutrinos
  - Supernova neutrinos (if one had happened...)
- Important additions:
  - Non-v measurements: tritium, 0nubb, etc.
  - Low-energy detection plays an important role for higher-energy neutrino sources too!



# NFI0: Low-Energy Detectors



- A wide dynamic range of signals from the sub-keV to 10s of MeV necessitates a use of diverse detection technologies
  - Organic / inorganic / noble element scintillation detectors
    - Captain-Mills, CHANDLER, COHERENT, Daya Bay, JUNO, KamLAND-Zen, PROSPECT, SNO+, ...
  - Solid-state ionization detectors
    - Majorana, reactor CEvNS, etc.
  - Bolometers
    - CUORE, reactor CEvNS, etc.
  - Time Projection Chambers
    - EXO, <u>SBN</u>/<u>MicroBooNE</u>, <u>ArgoNeuT</u>, etc.
  - Cherenkov Detectors
    - ANNIE, Super-K, etc.
  - Electrostatic, CRES Spectrometers
    - KATRIN, <u>Project8</u>
- Indicates that future progress for low-energy US-HEP requires broad/diverse detector R&D initiatives.

<u>Underline</u> = US-based

### NF01: Neutrino Oscillations



- Low-energy neutrinos are the source of best precision on many standard model neutrino flavor mixing parameters
- Recently:
  - **Daya Bay** reactor experiment greatly improved its 2012 first measurement of  $\theta_{13}$
  - **Super-K**'s recent improved solar analysis shifted/tightened its  $\Delta m^2_{12}$  parameter bounds
- Minor US support for impending **JUNO** reactor experiment, which aims for major improvements in  $\theta_{12}$ ,  $\Delta m^2_{12}$ , mass hierarchy knowledge



T. Schwetz (NuFit), Neutrino 2022

| (relat. precision at $3\sigma$ )                          |                   | for quarks |
|-----------------------------------------------------------|-------------------|------------|
| $egin{array}{c} 	heta_{12} \ \Delta m^2_{21} \end{array}$ | $(14\%) \ (16\%)$ | 0.6 %      |
| $ \Delta m^2_{31} $                                       | (7%)              |            |
| $	heta_{13}$                                              | (9%)              | 8.3 %      |
| $\theta_{23}(24\%)$                                       |                   | 5.2%       |

#### NF02: Neutrino Anomalies



 Three of the four 'canonical' short-baseline anomalies exist in the low-energy regime: the Reactor, Gallium, and LSND

#### • Recently:

- PROSPECT set new active-sterile oscillation limits; it and other global reactor efforts ruled out much of the suggested Anomaly space
- Daya Bay, PROSPECT improved knowledge of reactor V models, another possible source of the Reactor Anomaly
- **KATRIN**, other US-NP efforts (i.e. **BeEST**) set complimentary new active-sterile coupling limits at even higher  $\Delta m^2$ .
- Limited yet essential US support for **JSNS**, which is now taking data to directly address LSND at JPARC



## NF03: BSM



- Low-energy experiments, just like high-energy experiments, have hopped aboard the Neutrino BSM train.
- There are more low-energy BSM signatures searches than I can name in one slide. Let me try a few:
  - **ArgoNeuT**: Millicharged particles
  - CAPTAIN-Mills, COHERENT:
    Accelerator-produced dark
    sector particles
  - **COHERENT**: NSI parameter limits
  - **CONNIE**: reactor-produced dark matter
  - Daya Bay / Double Chooz: <u>CPT violation</u>, <u>wave packet decoherence</u>
  - **PROSPECT**: Boosted dark matter
  - Not to mention the pheno studies that could not be performed without these datas



# NF05: Neutrino Properties



- The neutrino's absolute mass and Dirac/Majorana nature are probed in nuclear decays at the MeV scale and below
- Recent:
  - CUORE, EXO, Majorana, KLZ limits on the effective neutrino mass are marching ever closer to or are breaking into the inverted hierarchy regime; big R&D questions for future ton-scale experiments have been answered.
  - KATRIN has pushed its direct neutrino mass limit below IeV, and first phases of next-gen CRES technology R&D by **Project8** have been done





## NF06: Neutrino Cross-Sections



ArgoNeuT, MINERVA, ANNIE:

Analysis of low-energy features in GeV-scale v beam data tells about the neutrons produced when they interact.

- NOvA, MicroBooNE continue the trend
- **COHERENT**: different detectors probe the N-dependence of the well-predicted CEvNS x-section







# NF07: Applications



•  $\overline{V}_{e}$ -based reactor monitoring: a go-to response when a layman

asks 'What are neutrinos good for?'

 CHANDLER and PROSPECT have demonstrated on-surface V<sub>e</sub> detection with plastic and liquid scintillators

 This milestone has generated interest, development in near-field monitoring tech

 Low energy analyses have also furthered development of US AI/ML expertise via HEP research

- Just a few examples:
- ArgoNeuT: finding <200keV signals in LArTPC images</li>
- KamLAND-ZEN: picking out 0nubb candidates from background





# Summary



- Experiments observing neutrinos and neutrino-related physics below ~100 MeV have yielded many high impact discoveries and observations for US HEP in the past 10 years
- The scope of physics delivered by low-energy neutrino experiments has been broad, touching each of the Neutrino Frontier topical groups for Snowmass 2021/2022
- While this talk focused on present achievements, many CSS talks and Snowmass Reports/Whitepapers will explain exciting prospects for low-energy physics during the next P5 period.



My school report:
The books were all great,
they solved all the mysteries,
and all the kids survived!