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Tomorrow: DUNE physics in detail

* Two sessions tomorrow morning are dedicated to the
DUNE physics program and P5 strategy

* 8am: Neutrino oscillation physics
* Neutrino oscillations in DUNE (Callum Wilkinson)

* Neutrino interactions uncertainties (Kevin McFarland)
* The DUNE Near Detector (Dan Cherdack)

* 10am: Low-energy and BSM physics

* MeV-scale neutrino physics in DUNE (Dan Pershey)
* Beyond 3-flavor oscillations in DUNE (Alex Sousa)

* Direct BSM searches (Jae Yu)
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DEEP UNDERGROUND
m— NEUTRINO EXPERIMENT

Sanford Underground
Research Facility

Fermilab

* Next-generation international neutrino & underground science experiment
hosted in the United States (37 countries + CERN)

* High intensity neutrino beam, near detector complex at Fermilab
* Large, deep underground LArTPC far detectors at SURF

* Precision neutrino oscillation measurements, MeV-scale neutrino physics,
broad program of physics searches beyond the Standard Model
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This talk

* Motivation: neutrino oscillations as part of a broad
physics program

* Designing DUNE: precision, robustness, and breadth

* DUNE physics potential

* Getting there: phased construction and opportunities
for expanded scope

* The message for Snowmass
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Neutrino oscillations:
Big picture questions

* What is the origin of neutrino
mixing? Is there an underlying flavor
symmetry, and how is it broken?

* What is the origin of the neutrino

masses? Why are the neutrinos so
light?

* Is leptogenesis a viable explanation |
of the baryon asymmetry of the Y
Universe?

* Is the vSM complete? Are there B
additional neutrinos? T X
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Searching for answers: precision

neutrino oscillation measurements
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Am2. sensitive to CP violation
IAmgol ] e Test the three-flavor
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ve U Vs paradigm —
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Neutrino oscillations:
current status

1 0 0 C13 ) e~iocp S13 19 S1o0 0O
Upnvins = | O a3 s | 0 1 0 —S12 c1p 0
0 —S593 (€93 —E?E'SCP 513 0 C13 0 0 1
e Current precision:
2 A A 2 —
m .
i - " * 0,5~ 2.7% (reactor v, disappearance)
2 —
Do) » o |Am2,,| ~ 3% (reactor v,
Am?,, disappearance and accelerator v,
A, disappearance), mass ordering
. vy unknown
S ,, in26,, ~ 0.5 + 0.1 heric and
" vy e sin20,; ~ 0.5 = 0.1 (atmospheric an
e Y accelerator v, disappearance + v,
appearance)
* Ocp Unknown
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Neutrino oscillations:
Next Generation goals with v - v,

1 0 0 C13 ) e~iocp S13 19 S1o0 0O
Upnvins = | O a3 s | 0 1 0 —S12 c1p 0
0 —S593 (€93 —615013813 0 C13 0 0 1

* Measure the mass ordering

2 A A2
m m
vy s * Measure ocp
Amg, 1S] in2
" e Improve precision on sin20,,
2 . .
DM, * Is it maximal?
2
Al * Resolve the octant
9 .
A2, | * Measure 0,; with v, appearance and
N EE— 3 similar precision to reactor — unitarity
e u YT
test
* Make multiple measurements — does
the PMNS matrix hold up?
i UNIVERSITY of |
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DUNE measures V, -V, VS, L/E In
wideband beam
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* DUNE is designed to resolve

degeneracies by measuring
flavor transitions as a
function of energy over more
than a full oscillation period

e DUNE will determine the

mass ordering and measure
dcp, Tegardless of the true

values

* Expect the unexpected:

DUNE is robust against
systematic effects and for
resolving deviations from

1 2 3 4 567¢ 530 2 3 4 5678 VSM
Neutrino Energy (GeV) Neutrino Energy (GeV)
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Neutrino oscillations as part of a
broad physics program

* DUNE FD has excellent low-energy neutrino
and BSM sensitivity:

e Large mass

* Deep underground
* High resolution

* Low thresholds

* Boosted BSM searches — high intensity
beam and capable ND

Target

Primary

/ Beamline

(T

e il
|||1|IIII||]||||||||||||“” : i (i
Ex.fmam LONTOI ||||\ ” ” “ || ” ” ” B2 ||| e
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LBNF: intense beam, underground
facilities and infrastructure

* 1.2 MW neutrino beam from PIP-II proton beam, upgradeable to
2.4 MW (see NF/AF session on Wednesday)

* Deep underground far site to accommodate four 17-kiloton
detector modules

\ Existing Proton Beam
WML % === LBNF Neutrino Beam
PIP-Il Proton Beam

B ROGTESTTR AYVE
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LBNF: intense beam, underground
facilities and infrastructure

* Construction is underway at both SURF and Fermilab

North cavern breakthrough January 2022 PIP-II construction May 2022

,,,,,,,,,,
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LArTPC technology provides
exqguisite resolution

» Clean separation of v, and v, charged currents
* Precise energy reconstruction over broad E, range

* Low thresholds: sensitivity to few-MeV neutrinos, hadrons

DUNE FD1-HD

" DUNE FD1-HD ,
simulated 2.5 GeV v -

e -simulated 3.0 GeV v,

S UNIVERSITY of
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LArTPC technology provides
exqguisite resolution
* ProtoDUNE is full scale in the drift direction

* Successful operation at CERN: low noise, stable HV,
high purity — demonstrates LArTPC technology and
DUNE design

DUNE:ProtoDUNE-SP Run 5779 Event 12360

10.0
..
5.0
iy stopping
muon}l.x proton 0.0
50 cm ProtoDUNE DATA e

0 100 200 300 400
Wire Number
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Near Detector: constraints to
enable precision measurements

* LArTPC detector: same nuclear target and detector
technology near & far

* Movement system to facilitate measurements in
different neutrino fluxes

* On-axis magentized low-density tracker and
spectrometer 2L
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Pred. Event Rate per 1 GeV

PRISM plays a critical role in
enabling DUNE'’s precision
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FD flux # ND flux — uncertainties in energy
dependence of flux, cross sections

ND flux changes with angle — take ND data
in different fluxes — build linear combination
to match FD oscillated spectra

For LBL: robust analysis approach with very
minimal dependence on interaction modeling

Also extends dark matter sensitivity
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Physics potential: CP violation

CP Violation Sensitivity

d.p Resolution (degrees)
- — N N W W = =
(=] a (=) ()] o 3] =) 13
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DUNE Sensitivity

All Systematics

Normal Ordering

sin’20,, = 0.088 + 0.003
sin’,, = 0.580 unconstrained

-0.8-0.6-0.4-0.2 0
Ocp/T

0.2 0.4 0.6 0.8 1

B 336 kt-MW-years
[ 624 kt-MW-years
1104 kt-MW-years
= Nominal AﬂaIVSis
....... 6,5 unconstrained

12

- DUNE Sensitivity
— All Systematics

" Normal Ordering
| sin20,,=0.088 +
0.4 < 8in0,, < 0.6

1 -0.8-0.6-0.4

e 336 kt-MW-years

624 kt-MW-years

Median of Throws

1o: Variations of
statistics, systematics,
and oscillation parameters

0.003

0.2 0
Ocp/T

02 04 06 08 1

 7° resolution to 6., without dependence on other experiments, discovery
sensitivity to CP violation over a broad range of possible values
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Physics potential: precision
measurements non unltarlty tests

2.6
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e Excellent on Am2,, and 0,,, including octant, and unique

PRISM measurement technique that is less sensitive to
systematic effects

e Ultimate reach does not depend on external 0,; measurements,
and comparison with reactor data directly tests PMINS unitarity
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MeV-scale physics: unique
opportunltles with v s

DUNE Prellmlnary

Infall Neulronlzallon Accretion Cooling
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5
Reconstructed E, (MeV)

Large detector + underground + low thresholds = sensitivity to supernova neutrinos

» Ar target makes DUNE uniquely sensitive to v, flux — measure neutronization

burst, and highly complementary to other water/hydrocarbon detectors which
measure predominantly v,

* Solar neutrino sensitivity to 8B and discovery potential of hep flux, with capability
to measure solar mixing parameters 0,, and Am2,,
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Beyond the 3-flavor SM picture:
hon-standard oscillation effects

Normalization systematics only

steriles
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* Combination of ND + FD, and broad energy spectrum — broad Am2 coverage for sterile searches

* Both ND and FD have excellent p/e resolution, and also ability to tag T charged currents —

complete 3-flavor test

* Unique to DUNE: ability to run high-energy beam optimized for v, appearance

* If inconsistency is observed, having multiple experiments at different baselines but the same L/E
will be important for understanding the origin

20
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DUNE is an excellent BSM physics

experiment

* For exotics of cosmic origin:

B Beyond the Standard Model Physics Program
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Not just Neutrino Frontier:
Dark matter at DUNE ND & FD

Fermionic DM y, =0.5, M, =20 MeV

- Fermionic DM v, ap = 0.5, My = 3M,

p=scat: I}IJI\L—-W kt-yr, 0 BGs and HK =380 kt-yr, 0 BGs

107

i

DM @ ND

IlII\II 1 IIII\III 1 L1111l
102 1wt

! i — DUNE (My, My, M) = (2000, 50, 10} MeV
M, [GeV] My Gy - - - DUNE (Mg, M,, 5M) = 2000, 50, 30) MeV
—— DUNE (Mg, My, 6M) = (6, 0.4, 0.5) GeV

¢ ND LAF 1S SEHSIthE tO DM 1073 =i HK  (Myp. My, 6M) = (6,04, 0.5) GeV
produced in beamline, off- Ok >

axis data helps to control |
SM backgrounds ] -

-~
~—
-
-

* FD is sensitive to inelastic T
dark matter of cosmic origin

R O
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Why DUNE?
Precision, robustness, breadth

* DUNE will make the strongest, most robust mass ordering measurement,
regardless of 6.pand 0,;, and regardless of the performance of other

experiments

« DUNE will make the most precise measurement of 6.p, no matter the true
values of unknown parameters, and without relying on other experiments
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Getting there: phased construction

* As was always envisioned, DUNE construction is
phased

e DUNE Phase I:

* Neutrino beam with 1.2 MW intensity

e Two 17kt LAr TPC FD modules, but underground
facilities and cryogenic infrastructure to support four
modules

* Near detector: ND-LAr + TMS (movable), SAND

* Construction schedule is funding limited —
changes to the funding profile have a significant
impact on the schedule

* Current CD1-RR schedule has FD 1&2 taking
physics data in 2029, beamline and ND by 2031

* The US DOE scope of Phase I was reviewed last
week in CD1-RR

m UNIVERSITY of | l
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Getting there: Phase Il upgrades

e DUNE Phase II:

* Fermilab proton beam upgrade to 2.4 MW
* Two additional 17kt FD modules

* Near detector: ND-LAr + MCND (movable),
SAND

* Beam upgrade benefits all Fermilab
experiments: dedicated session Wednesday on
Booster replacement options (AF2-AF5-NF)

* ND upgrade is driven by improved
performance at reducing systematics — talk
on ND-GAr in Wednesday session (NF)

* Opportunities to expand physics scope with 3t
& 4% FD modules: dedicated session

Wednesday (NF)
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DUNE Phase I: world-leading MO,

DUNE MO Sensitivity
10| All Systematics
| Normal Ordering

[ Phasel:d, =-m2

- Phase I: 100% of §, values

Startat 1.2 MW

== 4 year ramp to 1.2 MW

DUNE CPV Sensitivity
All Systematics
Normal Ordering

CPV

epends on

| Phasel

= Start at 1.2 MW

—— 4year ramp to 1.2 MW

beam ramp-up

AmZ, resolution (eV2 x 10%)

o

o

B
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V

sensitivity to maximal CP
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0.02}

DUNE Am3, Resolution
All Systematics
Normal Ordering

- Phase |

— Startat 1.2 MW

=— = 4 year ramp to 1.2 MW

Current best

* Phase I will do world-class long-baseline neutrino oscillation physics:

* Only experiment with 50 mass ordering capability regardless of true parameters
* Discovery of CPV at 3o if CP violation is large

» High precision disappearance parameters, (e.g. surpass current Amz2,, error in ~2-3

years)
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* DUNE is already
very sensitive to a
galactic supernova
burst with Phase I

e Shown is the time
distribution for a
hypothetical 10 kpc

SNB with 20 kton
fiducial mass
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DUNE'’s long-term goals require full
scope (Phase Il)

" DUNE CPV Sensitivity [ prase i by 6 years e DUNE needs full Phase II

All Systematics B Phase scope to achieve precision

6—Normal Ordering — _ . : .
50% of 5, values Slertat 121 physics goals defined in
P5 report

* CPV sensitivity for 50%
of 6.p values shown,

precision measurements
are similarly affected

=== 4 year ramp to 1.2 MW

* Timescale for precision
physics is driven by
achieving full scope on
aggressive timescale, early
ramp-up is not as relevant

ROCHESTER A(VE
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c=

Phase Il requires 40kt, 2.4MW,
upgraded near detector

7r 7r Ys
) phase = Prase n B Phase
6 6 6
C Phase II: no FD upgrade & Phase II: no beam upgrade N Phase II: no ND upgrade
5-_ .......................................................................................... 5:_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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: i I C 1l
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* To achieve the precision physics goals, including CPV sensitivity

for a broad range of 6., values, all three upgrades are required

* Plots show the effect of removing one of them, resulting in a

significant loss of sensitivity
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Module(s) of opportunity

Valencia
DUNE Module of Opportunity Workshop
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DUNE Snowmass 2022

Technologies for FD-3 and FD-
4 are not yet established -

opportunities to expand the
physics reach of DUNE

Many exciting ideas from the
community

Dedicated MoO session on
Wednesday morning

MoO Workshop open to
community: 2-4 November in
Valencia, Spain:

https://congresos.adeituv.es/dune_science/ficha.en.html
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MoO: expanding scope while
preserving core physics

P * Additional 20 kton fiducial mass is

critical for core oscillation physics, low
energy and BSM goals of DUNE — it is

part of Phase II

* It is a priority for DUNE that FD-3 and
FD-4 meet the needs of the LBL
program, including the systematic
constraints of the Near Detector

* We welcome ideas for expanding the
scope — the broader HEP community
should decide which scope expansions

to pursue
ROGHTESER AUVE

31 DUNE Snowmass 2022 B

O




DUNE’s message to Showmass

* DUNE Phase I should be realized in this decade A

Snowmass 2021

* Every effort should be made to resolve funding profile
issues that could delay first physics results into the 2030s

 Realization of the full DUNE Phase II should be the
highest priority

* Pursue upgrades aggressively such that the full DUNE scope
is achieved in the 2030s

* R&D work to design detectors that broaden the physics
scope while fulfilling the core goals of DUNE should
be supported

5
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The 2014 P5 report emphasized the
Importance of LBNF/DUNE

Recommendation 12: In collaboration with international
partners, develop a coherent short- and long-baseline neu-
trino program hosted at Fermilab.

For a long-baseline oscillation experiment, based on the science
Drivers and what is practically achievable in a major step for-
ward, we set as the goal a mean sensitivity to CP violation? of
better than 30 (corresponding to 99.8% confidence level for a
detected signal) over more than 75% of the range of possible
values of the unknown CP-violating phase &cp. By current esti-
mates, this goal corresponds to an exposure of 600 kt*MW*yr
assuming systematic uncertainties of 1% and 5% for the signal
and background, respectively. With a wideband neutrino beam
produced by a proton beam with power of 1.2 MW, this exposure
implies a far detector with fiducal mass of more than 40 kilotons
(kt) of liquid argon (LAr) and a suitable near detector. The
minimum requirements to proceed are the identified capa-
bility to reach an exposure of at least 120 kt*MW*yr by the
2035 timeframe, the far detector situated underground with
cavern space for expansion to at least 40 kt LAr fiducial vol-
ume, and 1.2 MW beam power upgradable to multi-megawatt
power. The experiment should have the demonstrated capa-
bility to search for supernova (SN) bursts and for proton
decay, providing a significant improvement in discovery
sensitivity over current searches for the proton lifetime.

33 DUNE Snowmass 2022

Recommendation 13: Form a new international collaboration
to design and execute a highly capable Long-Baseline
Neutrino Facility (LBNF) hosted by the U.S. To proceed, a
project plan and identified resources must exist to meet
the minimum requirements in the text. LBNF is the highest-
priority large project in its timeframe.

The PIP-1I project at Fermilab is a necessary investment in
physics capability, enabling the world’s most intense neutrino
beam, providing the wideband capability for LBNF, as well as
high proton intensities for other opportunities, and it is also
an investment in national accelerator laboratory infrastructure.
The project has already attracted interest from several potential
international partners.

Recommendation 14: Upgrade the Fermilab proton accel-
erator complex to produce higher intensity beams. R&D for
the Proton Improvement Plan Il (PIP-11) should proceed
immediately, followed by construction, to provide proton
beams of »1 MW by the time of first operation of the new
long-baseline neutrino facility.
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DUNE is emphasized in 2020
European Strategy

) '

_ European Strategy,
Major developments Update

from the 2013 Strategy

B. The existence of non-zero neutrino masses is a compelling sign of new
physics. The worldwide neutrino physics programme explores the full scope of the rich
neutrino sector and commands strong support in Europe. Within that programme, the
Neutrino Platform was established by CERN in response to the recommendation in the
2013 Strategy and has successfully acted as a hub for European neutrino research at
accelerator-based projects outside Europe. Europe, and CERN through the Neutrino
Platform, should continue to support long baseline experiments in Japan and the
United States. In particular, they should continue to collaborate with the United
States and other international partners towards the successful implementation of
the Long-Baseline Neutrino Facility (LBNF) and the Deep Underground Neutrino
Experiment (DUNE).
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DUNE is well on its way to
achieving Phase |

ProtoDUNE at CERN-

* Assembled international collaboration of T
>1300 scientists and engineers from 37
countries + CERN (and counting)

* Built, operated, and analyzed ProtoDUNE
large-scale prototype at CERN,
demonstrating the detector design will work

* Produced detailed technical design report of
the Far Detector SP module and physics
program, and conceptual design report for
Near Detector

* Far site excavation, preparation for
beamline and near site conventional
facilities underway

* DUNE is well on its way to Phase I -
let’s finish what we started

35 DUNE Snowmass 2022
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Thank You

DUNE Collaboration, May 2022, Fermilab
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