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v Interactions: Scope

« We know a lot about neutrino interactions.

- Weak interactions of quarks and leptons, and
even neutrinos, have been extensively studied
with W* and Z° boson precision production and
decay measurements.

« Our quark targets are bound.
- This is a problem, but not always a hard one.

- Reactor experiments don’t have interaction
problems with small momentum transfers and
therefore nearly static, elastic interactions.

« GeV neutrinos on nuclei are a special pain
point that nature has gifted us at accelerator
neutrino oscillation experiments.

nucleus
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How do v interactions matter?

* A neutrino oscillation experiment infers the parameters of interest in a
single event, neutrino flavor and energy, by measuring the final state.

« Energy: detectors are imperfect and lack uniform response:

- Energy is lost to nuclear mass, excitation.

100/~ MicroBooNE NuMI Data 2.4x10?° POT ~ —+— Beam-On Data (Stat)
Out-of-Cryostat

- Response to an energetic neutron is £ 7 ot oo
. . o _ [ Neutron
scant and stochastic, but energetic 80p-
protons steadily lose energy by ionization. ol

I Muon
I Kaon
[ Pion
[ Photon
[ Proton

[ Electron
MC + Beam-Off
Stat. Uncertainty

0°< 0<60°

- Am~ interacting in a detector tends to 402—
produce neutrons in its inelastic interactions, -
e.g., m p - n’n. Butant doesn't.

- A n° cleanly deposits all its energy,
including its rest mass.

(Data - MC) / MC
o
(=24
=l
+, | F
| F
prt
_{

: -0.5 i
Lt

T2 3 4 5 6 7 8 9 10
Leading Shower dE/dx (Collection Plane) [MeV/cm]
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Ihe European Physical Journal Special
be perfectly separated from electrons. Topics volume 230, pages4275-4291 (2021)
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https://link.springer.com/journal/11734

energy transfer

And the v, Problem...

By necessity, our v, rich beams have few v, in them to allow us to
study any difference between v, and v, interactions.

 Therefore, we infer v, interactions from studies of v,

- But what we study can’t give us the whole picture.

- Phase space (below), radiative corrections, etc.

O. Tomalak et al,
arXiV: 2105.07939
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https://arxiv.org/abs/2105.07939

Theory and Experiment
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Failed Multi-Scale Problems

Consider a bicycle rider at right, (77| M .

descending the stairs of the i‘/'? Defce’;t fz‘_ thel Eiffel ki ¢

Eiffel Tower / /’ /é’ ,(‘-stalrs y bicycle, ca. 19101

* A bicycle wheel is ~“Imin &
diameter.

e |If steps were ~1cm height or
the steps were ramps of
~100m, we could predict the

cyclist’s trajectory.
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Failed Multi-Scale Problems

Consider a bicycle rider at right, /7| A¥i ok
descending the stairs of the '@.’7 Descent of the Eiffel Tower

//8% stairs by bicycle, ca. 1910
Eiffel Tower 75 e ‘

* A bicycle wheelis ¥1m in 4P
diameter. ' -

e |If steps were ~1cm height or
the steps were ramps of
~100m, we could predict the
cyclist’s trajectory.

* Since the wheel size is too
close to the step size, the only
reliable prediction is that it is
going to be painful.
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Our Failed Multi-scale P oblem

 We have E,,~500 — 5000 MeV, and
therefore energy transfers from
nearly zero to 0(1000) MeV.

* Nuclear response at these neutrino
energies spans elastic, metastable
excitations, quasielastic
(knockout), and inelastic (new
particles).

« But single nucleon separation
energy in 4°Ar is ~30 MeV, and

mp — my~250 MeV. * Exact modeling of nuclear
response becomes akin to
* Processes cannot be cleanly equation of motion for the
separated, and models can't system above if energy
approximate away nuclear required to uncouple springs
structure nor final state degrees of g comparable to energy
freedom. required to break them.
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More Problems in v Interactions

» There are other, subleading processes
that are also difficult to model, but
potentially important.

« Knocking out multiple nucleons (“2p2h”,
two-particle-two-hole, or more) is
surprisingly common and difficult to model.

 Radiative corrections to neutrino
interactions will be different for muon and

electron neutrinos.

« Coherent % production produces very
energetic photons with little else in the
event towarnitisntav,.

 And so forth...
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Theory and Experiment

« Both are critical, and both are limited in what they can offer.

* Theory, as noted, uses necessary approximations, is limited in
phase space, or calculates overly inclusive reactions ill suited to
generator implementation.

« Data are good at pointing out modeling deficiencies, but often
poor at pinpointing the problem.

Reaction
Data
(VA or eA)

Effective

Models

&0
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THE
EVER-CHANGING

Some Revisionist , N
History HISTORVS

REVISIONIST
HISTORY

James M.
Banner, Jr.
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Hypothesis: Detector Improvements
Lead to Improved Models
«10% Phys.Rev.Lett. 100 (2008) 032301

» Canonical exhibit is MiniBooNE. 3 167

®  MiniBooNE data with shape error
--------- RFG model (M{'=1.03 GeV,x=1.000)
- RFG model (M}'=1.35 GeV,x=1.007)

RFG no&l(M =135 GeV, x=1.007) x1.10¢

Nominal model

lepton detection and identification. E .

 Single detector experiment: observed a |
discrepancy in the transverse momentum ~ ° GAOEREES N 1 ”&gi(éivf

of muons, related to “Qgg”. FA(Q2)=FA(0)/(14+Q%/M,2)2

« With the data in hand, there could have
been many culprits. But it was interpreted

as a change in the free nucleon cross- CALM
section, as seen through '2C nuclei. AND

: snarky poster I N CREASE
- Large “axial mass”. courtesy of MA

Teppei Katori
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Why was this important

* Response of carbon (from a GENIE model) in momentum and
energy transfer is below.

» Lepton detecting experiments, like MiniBooNE and T2K/Hyper-K
rely on the relationship between transverse momentum transfer
and energy transfer to estimate neutrino energy.

1.2
g p dofdqdq, (107 cmi/GeVf) T1*° e W (recoil mass) is fixed
E’ 1.0_—3 GeV neutrino + carbon 35 _ .
@ | GENIE2.8.4 withreduced r ) in this space
£ 0.8[-lines W = 938, 1232, 1535 MeV _4s %0 W2=(M+q,)?-q5?
?0_63_ - e Quasielastic band, at low
s [ W, is shown broadened
g 04f by nuclear effects.
» 48 e MiniBooNE assumption
02 - was that the fix left
0 gLE e ST ... . (Mo interactions in the QE
.0 0.2 0.4 0.6 0.8 1.0 1.2
true three momentum transfer (GeV) band.
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How to solve this puzzie

« Easy in retrospect... correlation of recoil and the lepton to try to mimic
the measurement of energy and momentum transfer.

* Requires detector technology (scintillator calorimetry) and high

statistics.
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Phys.Rev.Lett. 116 (2016) 071802

0 0.2 0.4 0.0

0.2 04 0.0

0.2

Reconstructed available energy (GeV)

14

19 July 2022 Kevin McFarland | Neutrino Interactions

@0
1@1

O

UNIVERSITY of

ROCHESTER T\



Interpretation: Multinucleon
Knockout, a.k.a., “2p2h”

N

eV)

In brief, this data was interpreted 310
as significant evidence for a large  § s
“2p2h” event rate. 8
And significantly larger than £ os
predicted by models. 0.2
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Why does it matter? 2p2h sits at  *8.

higher energy transfer for fixed
momentum transfer.

Interpretation of this rate as dN/da,

qguasielastic leads to the wrong
neutrino energy reconstruction.

true three momentumtransfer (GeV)

Fixed Three-Momentum Transfer

Elastic peak

"\ Quasielastic
E (nuclear broadening)

Pion Production

(resonances)

Kinematic
Limit

Increasing q, —

Increasing hadronic invariant mass (W) —
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Interpretation: Multinucleon
Knockout, a.k.a., “2p2h”

“2p2h” interpretation was
corroborated by other
measurements of the recaoil

system, in correlation with the

leptons.

Technique now used by NOVA

as an important part of their
oscillation analysis.
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Alex Himmel, JETP Seminar, June 2018
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Some Recent
Results...
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Result and Enabling Technology

 New MINERVA result correlating recoil with lepton kinematics.

« Key technologies: control of backgrounds, to isolate final states

with only nucleons, and overwhelming statistics.
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Simultaneous Measurement of
Proton and Lepton Kinematics in
Quasielastic like v,-Hydrocarbon
Interactions from 2 to 20 GeV
D. Ruterbories et a/. (MINERVA
Collaboration)

Phys. Rev. Lett. 129, 021803 —
Published 6 July 2022
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Why it matters B 4.50 < E, (GeV) < 7.00

0.00 < qg‘ (GeV) < 0.04 [ 0.04 < q°°‘ (GeV) < 0.08

x1.3 x 0.2

 Ability to compare lepton-only
energy reconstruction
(MiniBooNE, T2K) with
calorimetric reconstruction (NOVA,
DUNE) against a model, since
both are accessible in this data.
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e4nu Energy “Feed-down”

* In electron scattering, knowledge of the true electron energy

allows measurement of the difference between reconstructed
and true energy.

* Model (SuUSAv2 in this case) misses shape and rate in “feed-
down” tail where electrons are reconstructed at much lower
energy than reality, using neutrino reconstruction techniques.

| Data/SuSav?2 12 | Data/SuSav2 13
[ 2/e 1.159 GeV ¢ @ Lar e 1,159 Gev ¢ B
#/m 2257 GeV - | oL 8/= 2:257 GeV
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NER < == 0.6
= 0.4
= 0.2
1072 1 1 AlLS \
—-0.6 —-0.4 -0.2 0 —0.6 —-0.4 —-0.2 0 0.2
(e.e’p) E_, Feeddown M. Khachatryan et al., (e.e’) Egg Feeddown
LpOr Nature vol. 599, pp. 565-570 (2021) Om
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Why it matters

 Although electron scattering doesn’t probe all parts of the
reaction, key features, the nuclear initial state, and final state
Interactions, are common to electron and neutrino scattering.

 Deficiencies in the models used in neutrino scattering, when
they fail to predict electron scattering, point squarely at
deficiencies in the models used for E,, reconstruction.

Physics process

<€

-t

Oscillated v flux
onN B O ® O

Experimental analysis

Figure from M. Khachatryan et al.,
Nature vol. 599, pp. 565-570 (2021)
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Forecasting...
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What can we expect before and
during DUNE?

« SBN experlments are in an excellent position to exploit LAr TPC
capabilities in lower energy, broadband beams.

- Parallel to, and complimentary to MINERVA.

Narrowband beams (off-axis) at NOvA and T2K will continue to
make quasi-single energy measurements on carbon.

Prediction: PRISM, with its ability to
add information from the true neutrino
energy, will generate data that

solves puzzles critical for DUNE.

redSe pt2017 120 GeV, 1.2 MW
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Prediction: DUNE’s overwhelming near N _v
detector statistics will provide important = 1+ 2z 3 + s &7

constraints on v, interactions. neutrino fluxes at different
DUNE PRISM locations
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Closing Thoughts

|®®)|
fIMELIORA)
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Interactions: Progress on Puzzles

Both theory and data are required to make progress on the
understanding of neutrino interactions needed for precision
oscillation experiments.

New capabilities in neutrino experiments...
- improved detectors,

- high statistics,

- creative analysis ideas,

... have led to improvements in models which have proved
critical for correct interpretation of oscillation data.

Precision needs of DUNE will benefit from new capabilities,
such as DUNE PRISM and electron neutrinos at high statistics,
that we will use to explore neutrino interactions.
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Backup
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Measurements on Nucleons

» As the MiniBooNE story illustrates, a challenge
data on nuclei is whether we are seeing a
nucleAR effect, or a neutrino-nucleON effect.

* Mine safety considerations means we are
unlikely to have significant new datasets using
hydrogen targets, and nature doesn’t give us
free neutrons.

* Measurements that can measure
scattering on hydrogen by comparing
carbon to hydrocarbon will may fill the gap.

 MINERVA is on the cusp of publishing its
effort to measure v,H — u™ n.

« Capable DUNE near detectors with CH
will have overwhelming statistics to exploit.

Day. N
/7(/0 /G/

Data on
nucleons
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