Beyond Three-Flavor v Oscillations with DUNE

Alexandre Sousa

University of Cincinnati, on behalf of the DUNE Collaboration

Snowmass 2021 Community Summer Study, Seattle July 19, 2022

DUNE is a Machine for Discovery!

- High-intensity wide-band
 LBNF neutrino beam
 - 1.2 MW upgradeable to 2.4 MW

- Far Detector 1500m underground at SURF
 - 1300 km baseline
 - up to 4×17 kton modules, LArTPC technology

DUNE is a Machine for Discovery!

- High-intensity wide-band
 LBNF neutrino beam
 - 1.2 MW upgradeable to 2.4 MW

- Far Detector 1500m underground at SURF
 - 1300 km baseline
 - up to 4×17 kton modules, LArTPC technology

DUNE is a Machine for Discovery!

Non-standard short-baseline and long-baseline oscillation phenomena

- Mixing with light sterile neutrinos
- Large extra-dimensions
- Non-unitarity of the mixing matrix
- Non-standard neutrino interactions
- Violation of CPT Symmetry

Searches for new phenomena/particles at the ND

- Neutrino trident interactions
- Heavy neutral leptons
- Low-mass dark matter
- Axion-like particles

Searches for new phenomena at the FD benefitting

from its large mass and high resolution

- Inelastic boosted dark matter from the galactic core
- Boosted dark matter from the Sun
- Nucleon decay

See next talk by Jae Yu!

In this talk!

DUNE BSM Paper, Eur. Phys. J. C 81, 322 (2021)

More than Three Neutrinos?

- The LSND experiment measured a 3.8σ excess of v_e in a DAR v_µ beam over a very short baseline (~30 m).
- Oscillation explanation requires 4th neutrino state with $\Delta m^2_{41} \sim 1 \ {\rm eV}^2$
 - Z⁰ width measured at LEP => only 3 light active neutrinos
 - 4th neutrino is very heavy or has no weak interactions

=> Sterile neutrino (v_s)

More than Three Neutrinos?

- The LSND experiment measured a 3.8σ excess of v_e in a DAR v_µ beam over a very short baseline (~30 m).
- Oscillation explanation requires 4th neutrino state with $\Delta m_{41}^2 \sim 1 \ {\rm eV}^2$
 - Z⁰ width measured at LEP => only 3 light active neutrinos
 - 4th neutrino is very heavy or has no weak interactions

=> Sterile neutrino (v_s)

 In a 3+1 model, have 1 new mass scale, Δm²₄₁, 3 new mixing angles, θ₁₄, θ₂₄, θ₃₄, and 2 new CP phases δ₁₄, δ₂₄

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$

Looking for Light Sterile Neutrinos

► v_e , \bar{v}_e CC appearance (LSND, KARMEN, mBooNE, µBooNE, etc.): θ_{14} , θ_{24} $P_{\mu e} \approx 2 \sin^2 2\theta_{14} \sin^2 \theta_{24} \times \sin^2 \frac{\Delta m_{41}^2 L}{E} \qquad 4|U_{e4}|^2|U_{\mu 4}|^2$

• \bar{v}_e CC disappearance (Reactor experiments): θ_{14}

$$P_{ee} \approx 1 - 2\sin^2 2\theta_{14} \times \sin^2 \frac{\Delta m_{41}^2 L}{E} \qquad |U_{e4}|^2$$

► v_{μ} , \bar{v}_{μ} CC disappearance (mBooNE, MINOS(+), NOvA, T2K, IceCube, etc.): θ_{24} $P_{\mu\mu} \approx 1 - 2\sin^2 2\theta_{24} \times \sin^2 \frac{\Delta m_{41}^2 L}{E}$ $|U_{\mu4}|^2$

NC disappearance (MINOS(+), NOvA, T2K, etc.): θ₂₄, θ₃₄

$$1 - P_{\mu s} \approx 1 - \sin^2 2\theta_{24} \sin^2 \frac{\Delta m_{41}^2 L}{E} - \sin^2 \theta_{34} \sin^2 2\theta_{23} \sin^2 \frac{\Delta m_{31}^2 L}{E} |U_{\mu 4}|^2, |U_{\tau 4}|^2$$

$$\frac{\text{SBL}}{\text{LBL}}$$

 Thanks to the intense LBNF neutrino beam and exquisite detector spatial resolution of its detectors, DUNE is sensitive to all of these channels in a single experiment!
 Also sensitive to atmospheric measurements due to large FD, 1500 m deep at SURF

Looking for Light Sterile Neutrinos

Active-sterile mixing would distort standard oscillation probabilities

- DUNE will be sensitive to this effect through both the Near and Far detectors
- Wide-band LBNF beam enables probes over large regions of parameter space
- Plot shows distortion of standard oscillation probabilities for L/E or v energies at ND and FD

Looking for Light Sterile Neutrinos

- Distortions of standard oscillation probabilities change for different values of Δm²₄₁
 - Small Δm²₄₁: slow oscillations visible at FD only (FD-dominated region)
 - Intermediate Δm²₄₁: rapid oscillations average out at FD but still not visible at ND (Counting experiment)
 - Large Δm²₄₁: oscillations average out at FD and distortions are visible at the ND (ND-dominated region)

DUNE Sensitivities to Sterile Mixing

- Assuming 300 kton.MW.year exposure (Phase I ND) for 3+1 model with simultaneous fit to oscillations at ND and FD
 - GLoBES sensitivities include normalization-only systematics, so the two DUNE lines represent best (black) and worst (gray) scenarios
 - On its own, DUNE can potentially probe the sterile mixing parameter space at same level or better than present and future experiments, depending on Δm^2_{41}

DUNE Sensitivities to Sterile Mixing

- Assuming 300 kton.MW.year exposure (Phase I ND) for 3+1 model with simultaneous fit to oscillations at ND and FD
 - PRISM and Phase II ND will help control systematics in ND-dominated region, $\Delta m^2_{41} \gtrsim 0.5 \text{ eV}^2$
 - Strong complementarity with SBN program, thanks to ND measurement, while extending probes to lower values of Δm^2_{41} via the FD measurement

DUNE Sensitivities to Sterile Mixing

3+1 limits at $\Delta m_{41}^2 = 0.5 \text{ eV}^2$

	θ_{24}	θ_{34}	$ U_{\mu 4} ^2$	$ U_{\tau 4} ^2$
DUNE Best-Case	1.8°	15.0°	0.001	0.067
DUNE Worst-Case	15.1°	25.5°	0.068	0.186
NOvA	20.8°	31.2°	0.126	0.268
MINOS/MINOS+	4.4°	23.6°	0.006	0.16
Super–Kamiokande	11.7°	25.1°	0.041	0.18
IceCube	4.1°	-	0.005	-
IceCube-DeepCore	19.4°	22.8°	0.11	0.15

- Assuming 300 kton.MW.year exposure (Phase I ND) for 3+1 model with simultaneous fit to oscillations at ND and FD
 - DUNE can extend probes of v_{τ} -sterile mixing to lower values of Δm^2_{41} and improve the limits on θ_{34} , the least constrained sterile mixing angle
 - Can be further improved by combining beam + atmospheric measurements

DUNE and v_τ Probes

- Most of our knowledge of v_τ sector results from assuming unitarity of PMNS matrix and lepton universality for cross sections
 - v_{τ} CC production threshold, E_{ν} > 3.5 GeV, is very challenging for signal accumulation
- DUNE is in a unique position to probe the v_{τ} sector using:
 - High-energy tail of CP-optimized beam during Phases I and II (130 v_{τ} CC, 30 \bar{v}_{τ} CC/year in FD)

• Dedicated v_{τ} - optimized beam run during Phase II (800 v_{τ} CC/year in FD)

• Also atmospheric neutrino measurements with FD, like SuperK and IceCube

Anomalous v_{τ} Appearance at DUNE ND

 Higher energy of v_τ - optimized beam, BDT based on kinematic variables, and measurements of a wide range of muon momenta from curvature in DUNE ND Phase II's ND-GAr, enable good statistics in selection of v_τ CC sample from v_µ CC backgrounds.

Anomalous v_{τ} Appearance at DUNE ND

Sensitivities for 1 year of running with v_τ - optimized beam (not expected during Phase I)
 Including an overall 10% syst. uncertainty; smearing according to each detector's resolution

- Potential leading sensitivity in difficult to probe parameter space during DUNE Phase II
 Further improvements possible by using the SAND detector in the ND complex
 - Complementary to v_{τ} -sterile mixing probes with FASERnu and FPF@LHC *Bai et al., arXiv:2002.0301*

See H. Razafinime's talk, Saturday NF EC parallel

DUNE and the Experimental v Anomalies

			F laws	Davis	Davis	Daula
	Flavor Conversion:	Flavor	Flavor Conversion:	Dark	Dark	Dark
		Conversion:		Sector:	Sector:	Sector:
Source	3+N Oscillations	Anomalous	Lepton Flavor	Decays in	Neutrino-	Dark-particle-
		Matter	Violation	Flight	induced	induced
		Effects			Up-scattering	Up-scattering
Reactor	DANSS Upgrade,					
	JUNO-TAO, NEOS-II,					
	Neutrino-4 Upgrade,					
	PROSPECT-II					
Radioactive	BEST-2, IsoDAR, THEIA,					
Source	Jinping					
Atmospheric	IceCube Upgrade, KM3NET				IceCube U	
	ARCA, DUNE, Hyper-Kai	niokande,			KM3NET, C	
	THEIA				ARCA, [
					Hyper-Kamiok	1
Pion/Kaon	JSNS ² , COHERENT,		JSNS ² ,			COHERENT,
Decay-At-	Coherent-Captain-Mills,		COHERENT,			Coherent-
Rest	KPIPE		Coherent-			Captain-Mills,
			Captain-Mills,			KPIPE,
			KPIPE, PIP2-BD			PIP2-BD, SBN-BD
	(D)		FIF2-DD			
Beam Short Baseline	SBN			SBN, FASE	$\mathbb{R}\nu$, SND@LHC,	FLArE
Beam Long	DUNE, Hyper-Kami	okande, ESSnuS	В	DUNE, Hype	r-Kamiokande, E	SSnuSB
Baseline						
Muon Decay-	nuST(RM			nuSTORM	
In-Flight						
Beta Decay	KATRIN/TRISTAN,					
and Electron	Project-8, HUNTER,		<u>NF02 Whi</u>	<u>te Paper, he</u>	<u>p-ex/2203.0</u>	<u>7323</u>
Capture	BeEST, DUNE (³⁹ Ar),					
	PTOLEMY, $2\nu\beta\beta$	NF02 Se	ssion on Ex	kpt. v Anor	nalies, Thu	irs, 10 am

- Pure 3+N sterile mixing disfavored as explanation for global neutrino data due to tension between appearance signals and null disappearance results
- With its strong multi-channel sensitivity and wide-band beam, DUNE will test more exotic scenarios

Large Extra-Dimensions

- Large Extra-Dimensions would cause distortions of 3flavor oscillations from mixing of neutrinos with Kaluza-Klein (KK) modes
 - For LED model, *Davoudiasl et al., PRD* **65**, 105015 (2002), assuming one LED in the bulk, KK modes in 3+1 spacetime brane behave like sterile neutrinos
 - Showing DUNE sensitivity for 300 kton.MW.year (Phase I) compared to MINOS published results

3+1

Non-Unitary Mixing

If new heavy states mix with active neutrinos (*e.g.* if neutrinos acquire mass through a type I seesaw mechanism), the mixing matrix need not be unitary

- $|\alpha_{\mu e}|=0$ 5⁵⁰ $\alpha_{\mu e}|=10^{-1}$ |α_{µe}|=10^{-,} ~×3 3σ 2 $|\alpha_{\mu e}| = 10^{-1}$.<u>π</u> 2 <u>π</u> 2 0 $-\pi$ π $\delta_{\rm CP}$
- Allowed regions at the 1σ, 90%, and 2σ CL for non-unitary mixing parameters for DUNE-only (solid), and DUNE + existing constraints (dashed)
 Potential impact of non-unitarity on the DUNE CP violation discovery potential
 - Assuming 300 kton.MW.year (Phase I ND)

Non-Standard Neutrino Interactions (NSI)

• In the Standard Model,

With new physics, we could have

- New neutral-current-like interactions during neutrino propagation between the Near and Far detectors can be described as new contributions to the neutrino matter effect (MSW)
 - These contributions are encoded by the new coefficients ϵ_{ij}

Alex Sousa | Beyond Three v Osc. with DUNE

Non-Standard Neutrino Interactions (NSI)

• DUNE can improve current constraints on $|\epsilon_{e\mu}|$ and $|\epsilon_{e\tau}|$ by a factor of ~2

Allowed regions for an exposure of 300kt.MW.year. Current bounds from <u>Gonzalez-Garcia, Maltoni, arXiv:1307.3092</u>

90% C.L. 1-dim. DUNE constraints compared with bounds from <u>Gonzalez-Garcia, Maltoni, arXiv:1307.3092</u>

Violation of CPT symmetry

DUNE can search for CPT violation by $P(\nu_{\mu} \rightarrow \nu_{e}) = 0$ comparing ν_{μ} and $\bar{\nu}_{\mu}$ disappearance between ND and FD $P(\nu_{\mu} \rightarrow \nu_{\mu}) = 0$

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &\neq P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) \Rightarrow \text{CP violation} \\ P(\nu_{\mu} \rightarrow \nu_{\mu}) &\neq P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}) \Rightarrow \text{CPT violation} \end{split}$$

 With 300 kton.MW.year running, DUNE can improve limits on Δ(Δm²₃₁) by over a factor of 5 and, depending on the octant of θ₂₃ (low, high, maximal), the limits on Δ(sin²θ₂₃)

Present limits

$$\Delta(\Delta m_{31}^2) \equiv \left| \Delta m_{31}^2 - \Delta \bar{m}_{31}^2 \right| < 3.7 \times 10^{-4} \text{ eV}^2$$

$$\Delta(\sin^2 \theta_{23}) \equiv \left| \sin^2 \theta_{23} - \sin^2 \bar{\theta}_{23} \right| < 0.32$$

Summary and Outlook

- The highly-capable DUNE detectors and the powerful LBNF beam will enable a very rich and diverse program for New Physics probes in the next decades
- DUNE has powerful physics reach for a broad range of beyond three-flavor neutrino mixing models
 - Can probe most flavor transition channels over wide energy spectrum within single expt.
 - Deployment of Phase II essential for DUNE to achieve its full BSM physics potential
 - Highly complementary to other efforts, ongoing or projected for the next decade
- As a machine for discovery, DUNE will provide leading guidance to experimental and theoretical efforts involving neutrinos and/or new particles/interactions
- Stay tuned for the next talk on further exciting DUNE BSM Physics opportunities!

Alex Sousa | Beyond Three v Osc. with DUNE

Supplements

Preliminary Atmos. Sterile Sensitivities

T. Thakore, Neutrino '22

Assuming 400 kton.years exposure

	Track-like events	Shower-like events
Reconstruction efficiency (CC)	80%	80%
Reconstruction efficiency (NC)		0.5%
Neutrino energy resolution	18%	13%
Neutrino direction resolution	10 degrees	10 degrees

v_τ-Optimized Beam

Laura Fields, NuTau 2021

FUTURE: DUNE

- Beamline can be tuned to higher energy by using two NuMI horns and increasing horn separation
 - Fairly **simple optimization**; can probably be improved on, but not dramatically

•

v_{τ} CC Selection Variables

 P_{Tmuon} **R**_{miss} The signal and background separation is Table shows 6 variables providing 12 2.4 Gev (1/N) dN/ 0.0256 based on kinematic differences. Used a highest signal/bg separation 2.2 ν_{τ} signal U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)% iow (S,B): (0.0, 0.0)% / (0.0, 0.0)% (1/N) dN/ 0.154 total of 18 variables. 2 1.8 background 0.8 1.6 Ranking **Kinematic varialbles** 1.4 0.6 1.2 $P_T^{\tau_{vis}}$ 0.4 0.8 Q_T 1 P^{Miss} P_{TOT}^{vis} 0.6 0.2 0.4 P_{Tmuon}: transverse lepton 0.2 ν_{τ} 2 momentum 3 4 5 6 0.6 0.8 0.4 Hadrons GeV $\theta_{\nu Miss}$ E_{Tot} $\theta_{\nu Miss}$: angle between beam direction and missing $P_T^{Hadrons}$ 0.03 degree 3 (1/N) dN/ 3.98 Gev 0.04 transverse momentum 0-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)% (S,B): (0.0, 0.0)% / (0.0, 0.0)% 0.025 0.035 dN/4.61 0.03 E_{Tot} : total visible energy 0.02 4 \vec{P}_{tl} au_{vis} \vec{P}_{tl} 0.025 au_{vis} 0.015 (1/N) 0.02 $\Phi_{muon \ hadron}$: angle Φ_{lh} Φ_{lh} 5 between transverse muon and 0.015 0.01 $\not P_T$ $\not P_T$ hadron momentum 0.01 0.005 P_{Tot} : total transverse 0.005 $\dot{P_{th}}$ 6 P_{th} Hadron Jet momentum Hadron Jet 20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 Degree GeV **Background interaction** ν_{τ} CC interaction products Examples of ν_{τ} signal (blue) and background (red) kinematic variables products in the transverse plane in the transverse plane distribution. Electron channel Muon channel ν_{τ} CC ($\tau^{-} \rightarrow \mu^{-}$) selection efficiency v_{τ} CC ($\tau^{-} \rightarrow e^{-}$) selection efficiency H. Razafinime, Neutrino '22 0.16 0.06 M. Rajaolisoa, APS '21 0.14 0.05 0.12 Efficiency without smearing 0.08 0.03 fficiency with smearing 0.06 **DUNE Simulation** 0.02 **DUNE Simulation** 0.04 Preliminary Preliminary 0.01 0.02

26 July 19, 2022

Alex Sousa | Beyond Three v Osc. with DUNE

 $\begin{array}{c} 30 \\ \nu_\tau \text{ energy (GeV)} \end{array}$

University of CINCINNATI

30 v_τ energy (GeV)

Proton Decay

- Proton decay expected to occur in Grand Unified Theories with a lifetime of ~10³⁴ - 10³⁶ years
- DUNE is most sensitive to proton decay in the $p \rightarrow K^+ + \bar{v}$ channel
 - Excellent calorimetric capabilities of LArTPCs enable good kaon identification, as well as high kaon/muon tracking efficiency
 - A lower limit on the proton lifetime of 1.3×10³⁴ yrs@90%CL is expected if no signal is observed in 10 years

 $\tau (p \to e^+ \pi^0) > 2.4 \times 10^{34} \, \text{years}$ $\tau \left(p \rightarrow K^+ \bar{\nu} \right) > 8.2 \times 10^{33} \, \mathrm{years}$ Signal μ^+ e Background

> University of CINCINNATI

World's Best Limits from SuperK: