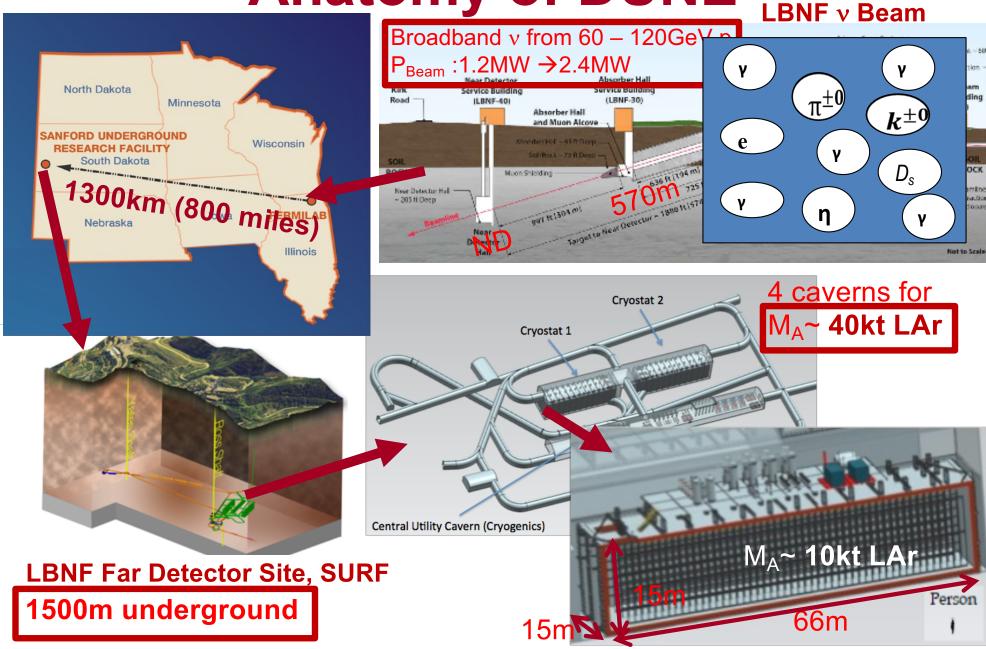
BSM Physics Opportunities @ DUNE- Direct Detection Searches

Jaehoon Yu Snowmass 2021 Community Summer Studies July 17 - 25, 2022

Content

- Introduction
- Anatomy of DUNE
- What makes BSM physics possible at a v experiment?
- What makes DUNE a machine for BSM@v?
- Selected DUNE BSM physics topics & sensitivities
- Conclusions
- Take home messages



Introduction

- v flavor oscillation is a firmly established phenomena
 - Flavor and mass eigenstates differ (prob α θ_{ii} , Δ m² & L/E_{ν})
- The neutrino sector in SM (m_v=0) needs a modification to reflect m_v!
 - Precision measurements of the oscillation parameters
 - Mixing angles and mass hierarchy
 - Studying the CPV in v sector and precisely measuring the CP phase
 - Do neutrinos and anti-neutrinos oscillate the same way?
- These could lead to a new symmetry
- The question of the grand unification
 - Energy scale of the unification and discovery of nucleon decay
- Understanding particles of astrophysical origin
 - Supernova v, blackhole formation, relic neutrinos, dark matter, etc
- These require high statistics samples
 - Large mass, large volume and highly capable (near and far) detectors
 - High intensity neutrino beam facility with a long baseline

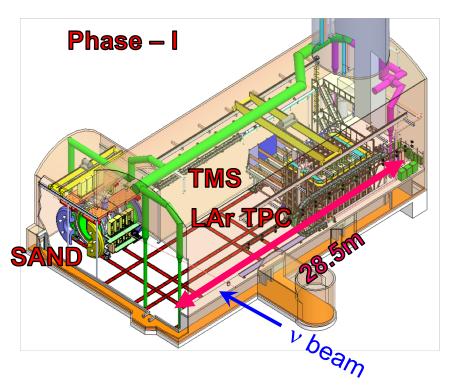
Anatomy of DUNE

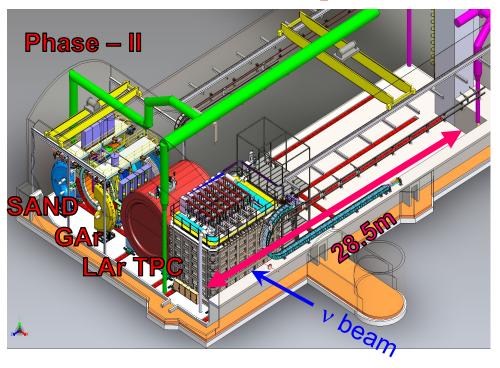
Producing new states @ Neutrino Experiments

Variety of mechanisms possible to produce new particles → Access to new physics

- (1) Charged meson decays
- → Horn focussing enhances acceptance of charged mesons
- $M^{\pm} \to \ell^{\pm} N$ $M^{+} \to \ell^{+} \nu X$

(2) Neutral meson decays


$$M^0 \to \gamma X$$
$$M \to \gamma X X$$


3-body decays not helicity suppressed.

- (3) Secondaries production (p \rightarrow secondaries): $\gamma N \rightarrow XN$
- (4) Resonance & Compton productions : $e^+e^- \rightarrow X$, $e^+e^- \rightarrow vv_s$, $e+\gamma \rightarrow e+X$, etc.
- (5) DY, brem, scalar meson decays, etc : $pp \rightarrow ppX$
- (6) And many more

Close collaborations of theorists & experimentalists continue expanding this list!!

DUNE Near Detector Complex

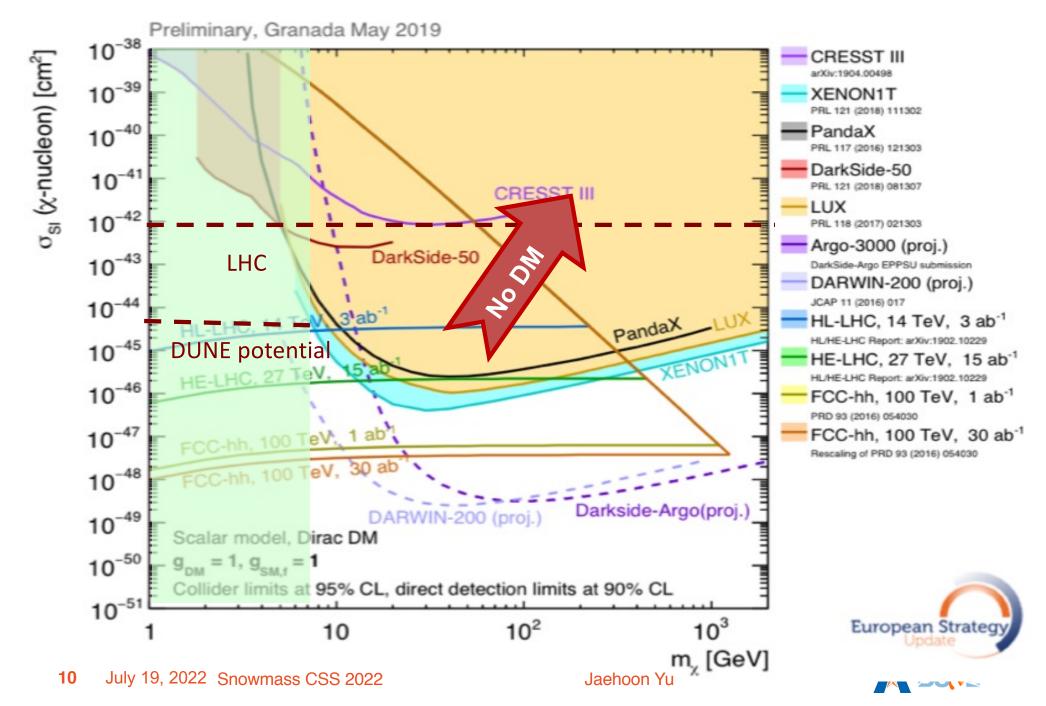
- Phase I ND consists of [LAr TPC (M_A=150t, V_A=105m³) TMS, making up the PRISM SAND
- Phase II Full Suite ND consists of [LArTPC Magnetized (0.5T) large volume HPGAr TPC (10atm M_A=1t, V_A=108m³ w/ ECAL, making up the PRISM SAND

BSM@v Signature Categories

- Direct Observation Signatures from the beams
 - High beam flux
 - Large mass, high density for scattering signatures
 - Large volume, low density for decay signatures
 - Capable near detector complex
 - Low threshold energy
 - Low background from cosmic sources
- Inferred Observation Signatures from both beam and cosmogenic sources
 - Leverage oscillatory behaviors
 - Large target mass FD for interactions
- What do we need to know?
 - Signal flux and realistic behaviors in the detector
 - Neutrino flux and their interactions in the detector as bck

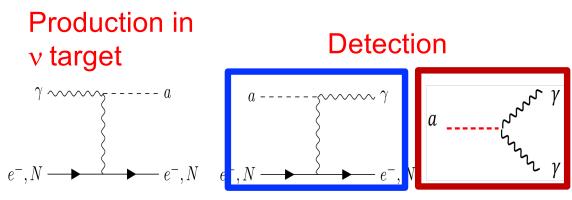
What makes DUNE good for BSM@v?

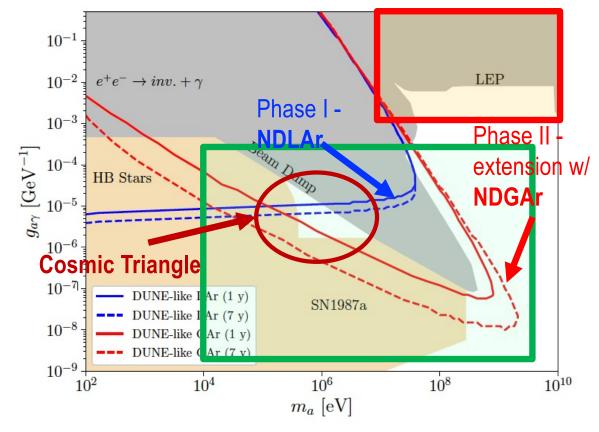
- Direct Observation Signatures from the beams
 - Requires high beam flux → P_{Beam}= 1.2 2.4MW
 - Large mass, high density for scattering signatures → ND LAr w/ M_A=150t, fine segmentation
 - Large volume, low density for decay signatures → ND GAr ND w/ ECAL and magnetized precision tracking
 - Capable near detector complex → Combinations of ND LAr + ND GAr on PRISM plus SAND for fine tracking & beam monitoring
 - Low threshold energy → Both ND and FD TPC threshold ALA few MeV
 - Low bck from cosmic sources → 1500m underground FD
- Inferred Observation Signatures from both beam and cosmogenic sources
 - Leverage oscillatory behaviors → ND and FD combinations
 - Large target mass FD for interactions → FD M_A=40kt
- What do we need to know?
 - Signal flux and realistic behaviors in the detector
 - Neutrino flux and their interactions in the detector as bck → ND Complex with PRISM



Selected BSM Topics @ DUNE

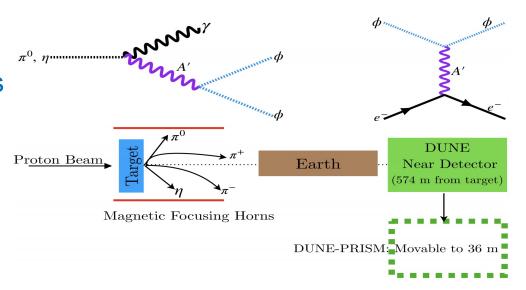
- High beam power, large detector mass + highly capable, precision near and far detectors with low E threshold make <u>DUNE a BSM machine</u>
 - Recall the signal to background ratio grows by the sqrt of the beam power
 - Near Detector Searches → Take advantage of high beam power
 - Axion-like Particles (ALP)
 - Low mass Dark Matter (LDM)
 - Heavy Neutral Leptons (HNL)
 - Dark Photon
 - Neutrino Trident
 - Milli-charge Particles (mCP)
 - And many many more..
 - Far Detector Searches → Take advantage of ND, large V_A FD & long baseline
 - Sterile neutrino searches
 - Non-standard Interactions, Non-Unitarity, CPT violation
 - Large Extra Dimensions (LED)
 - Boosted Dark Matter (BDM) & Inelastic Boosted Dark Matter (iBDM)
 - And many many more...
- Strong collaboration of theorists and experimentalists essential
- Some of these topics covered in <u>EPJ C.81, 322</u> (2021)

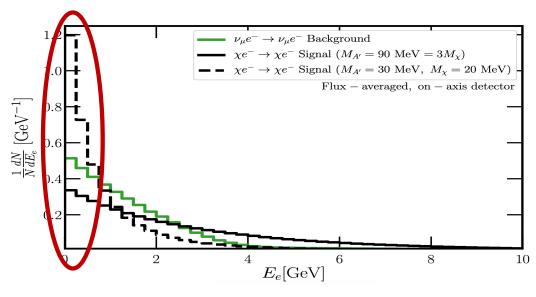



Dark Matter Search Motivation

ALP Searches @ DUNE ND

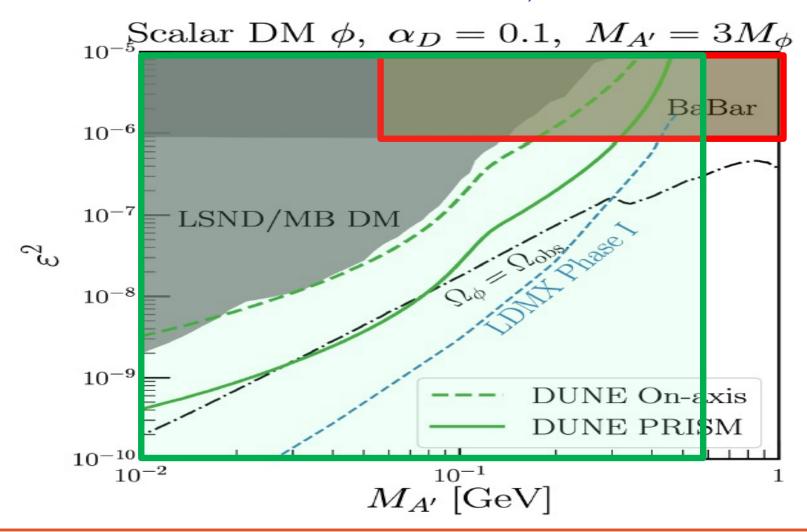
- Axion-like particles (ALP)
 can be produced via the
 Primakoff process in high
 intensity proton beams in
 the neutrino target
- Detection through a scattering with e/N + γ or decays of the ALP to two γ
- Other axion coupling, e.g.
 g_{ae} is accessible, as well
- DUNE ND Phase II enables complete closure of the Cosmic Triangle!!
 - Brdar et al., PRL126,201801 (2021)





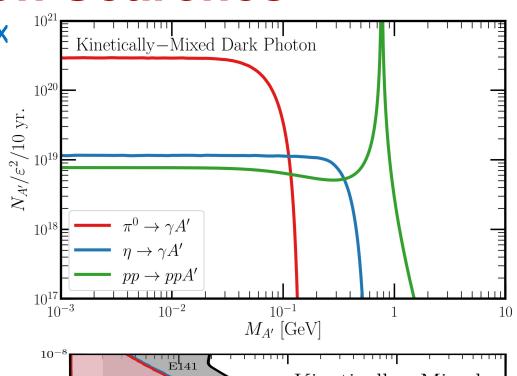
Light Dark Matter (LDM) Search

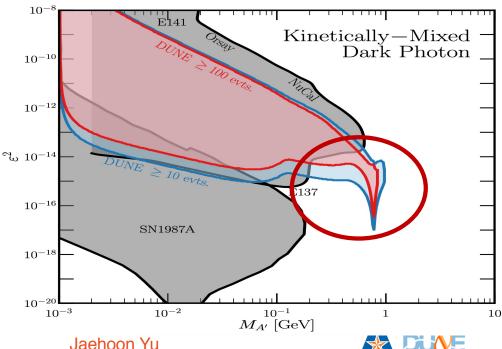
- LDM's produced in the target via coupling of dark photon with a SM γ from brem, scalar meson decays or direct DY
- Identify the signal using e⁻ or nucleon recoil by LDM via dark photon kinetic coupling with SM γ
 - Batell et al. [0906.5614],
 - deNiverville et al. [1205.3499]
 - Coloma et al. [1512.03852]
- Ability to identify e⁻ recoil w/ low E threshold key
 - Expands the LDM mass coverage
 - Recoil E_e peaks at low E for low LDM mass
 - Significant background from ν_{μ} scattering off e^{-}



LDM Search Sensitivity

- Search benefits from DUNE PRISM for neutral meson induced LDM
 - Leverage more rapid reduction of v_{μ} flux than the signal off-axis (De Romeri *et al.*, PRD100, 095010, 2019)





Dark Photon Searches

- New U(1) could kinetically mix with a SM γ from scalar meson decays or direct DY
- If these dark photons can live sufficiently long to reach the DUNE ND → Look for their decays to a charged lepton pair
 - $A' \rightarrow e^+e^-, \mu^+\mu^-$
 - Many more final states..
 - Cleaner signature
 - Low E thre. for higher ε_A
 - Low energy v-N interactions essential for backgrounds

Dev, et al., JHEP07, 166 (2021)

v-Trident Search @ DUNE ND

 SM predicts the neutrino tridents through rare weak processes → produces a pair of charged leptons.

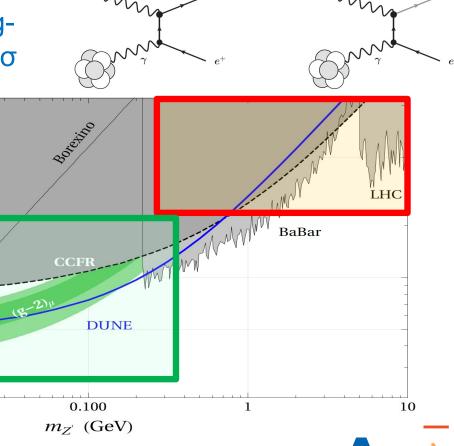
 Unknown gauge boson couplings could cause deviations in the SM predicted signal yields

• DUNE sensitive in the region where (g- $2)_{\mu}$ anomaly can be explained at the 1σ

0.010

0.005

0.001

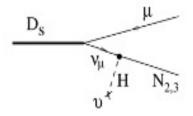

 $5. \times 10^{-4}$

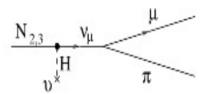
g'

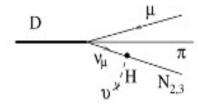
BBN

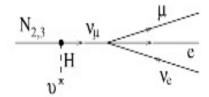
0.010

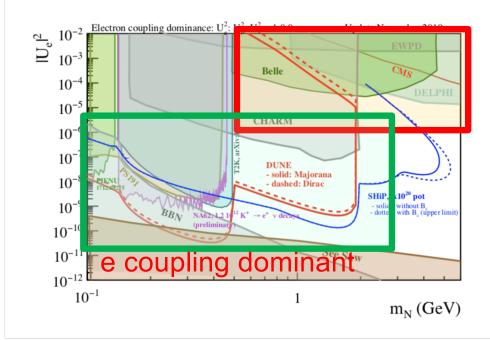
and 2_o level

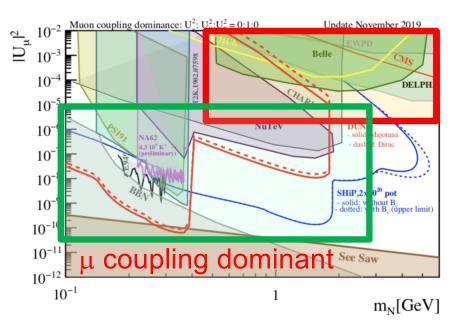

0.001

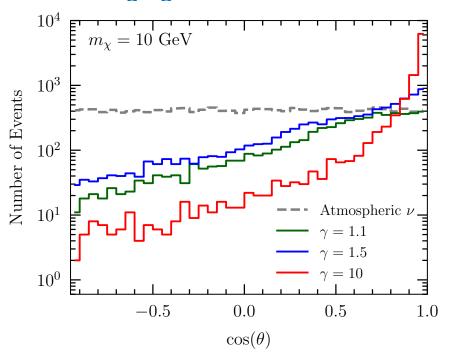

HNL Searches @ DUNE ND

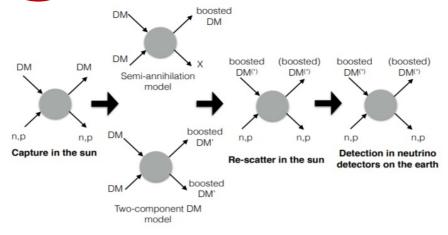

- High intensity proton beams produce
 HNL from the decays of heavy mesons
 - → complementary to colliders
- HNL decays to charged leptons and lighter mesons in the DUNE ND complex
 → a charge lepton + a meson, 2 charged leptons + v
 - Coloma et al., (2007.03701)
- Clear demonstration of complementarity to the LHC

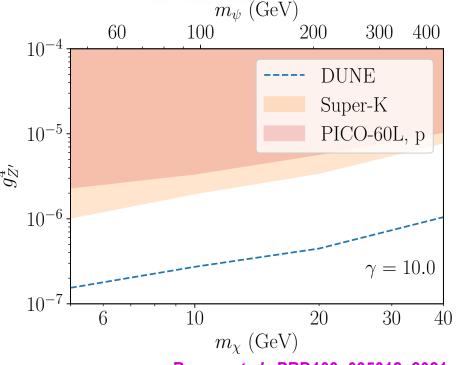

Production


Detection in ND



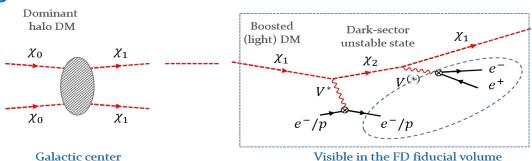


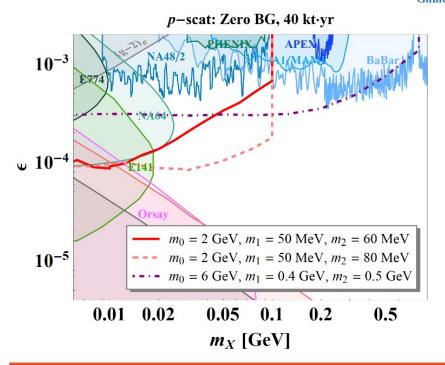


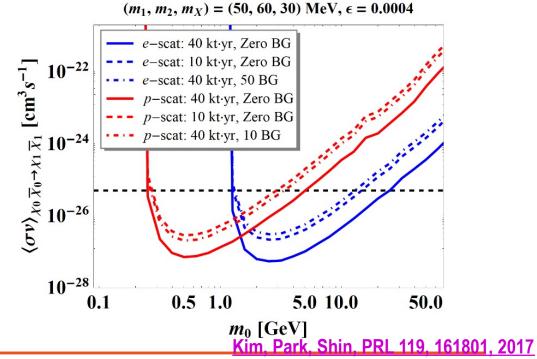


BDM Searches @ DUNE FD

- DM's captured in the Sun could be boosted in it and enter the detector (BDM)
- Potential of searching for BDM in its elastic scattering in detector via nucleon or e recoil
- Large volume LAr TPC FDs' precision tracking and vertexing w/ low E threshold capability enables detection of BDM
- Backgrounds from v-N interaction challenging


Annihilation in the sun

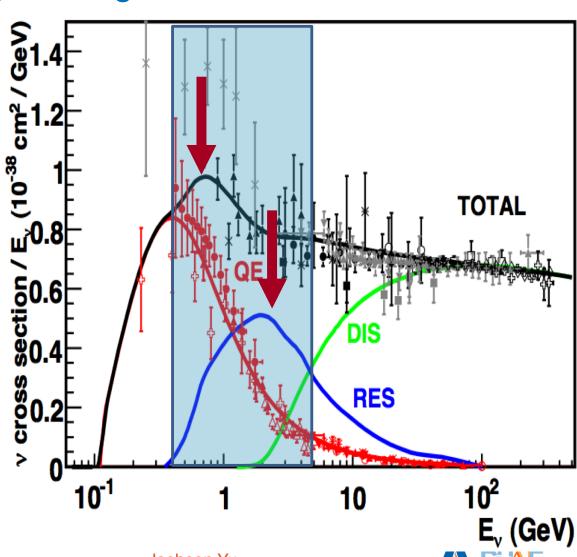

Berger et al., PRD103, 095012, 2021



iBDM Searches @ DUNE FD

- DM annihilation in the galactic center produces boosted dark matter (BDM)
- Potential of searching for relativistic BDM in its inelastic scattering in the detector → Distinctive signature of 3 leptons + missing energy final states helps overcome backgrounds
- Large volume, high density, underground FDs' w/ precision tracking and vertexing w/ low E threshold key

Signature & Backgrounds of BSM@v


BSM signal final states include charged leptons (e+/-, μ +/-), photons and nucleus (nucleon) recoil $\rightarrow v$ -N interactions the primary background

BSM Process	Selected signatures	Background	
ALP	Scattering: γ+e, γ+N (n) Decay in flight : γγ	v coherent, NC w/ π^0 , v_e CC w/ π^0 , etc	
LDM	$\chi e^{-} \rightarrow \chi e^{-}, \ \chi N \rightarrow \chi' N \rightarrow \chi e^{-} e^{-} N,$ $\chi N \rightarrow \chi' N \rightarrow \chi \gamma N,$	NC w/ π^{0} , ν_{e} CC, QE, RES	
mCP	Multiple e- scatterings	$ u_{ m e}$ CC w/ π^0	
Dark Photon	A→e⁻e⁺, μ⁻μ⁺, many more	v CC + mis-ID π, Accidental overlap of CC	
HNL	$N \rightarrow \nu e^- e^+, \nu \mu^- \mu^+, \nu \gamma, \nu e \mu, \nu \pi^0, \ e \pi, \mu \pi$	ν CC + mis-ID π , $\nu_{\rm e}$ CC w/ π^0	
v trident	ν→νe⁻e⁺, νμ⁻μ⁺, νeμ	$\nu_{\mu} N \rightarrow \nu_{\mu} \pi N' \ (\nu \ CC)$	
BDM/ iBDM	$\chi N \rightarrow e^+e^-e^-N, \chi N \rightarrow e^-N, \chi N \rightarrow nN$	ν coherent, NC w/ π^0 , ν_e CC	
Many more	Many many more		

Low E v Interactions

- QE & RES dominates v-N interactions in E_v range where the two oscillation maxima reside, for the case of DUNE → critical to understanding v backgrounds
- Large uncertainties for v-N x-sec calculations
- DUNE can utilize its powerful ND complex to measure x-sec insitu
- Collaboration between NP and HEP communities essential

Tails, tails and tails

- BSM production extremely rare and are in the tail ends of the SM processes → can easily be masked by SM fluctuations
- Many different theoretical predictions and generators for v−N interactions have been in existence and continue improving → but they still have sizeable uncertainties within each and between themselves
- Generator tools begin to incorporate BSM
 processes but could take a long time to implement
 due to insufficient resources → need further
 strengthening the efforts

Conclusions

- DUNE is a powerful experiment designed for precision v property measurements
- DUNE's intense proton beams and superb detectors make it uniquely capable of probing wide breath of BSM physics
- DUNE can explore BSM physics in the kinematic regime complementary to EF experiments
- v-N interactions critical backgrounds to BSM physics at DUNE → Fundamental to improve on nuclear interaction modeling through a <u>close collaboration between HEP and</u> <u>NP communities</u>
- <u>DUNE made it possible to contemplate</u> many BSM topics at neutrino experiments
 - All NF03 physics topics list (grossly incomplete) are covered by DUNE

NF03 Physics Topics Table

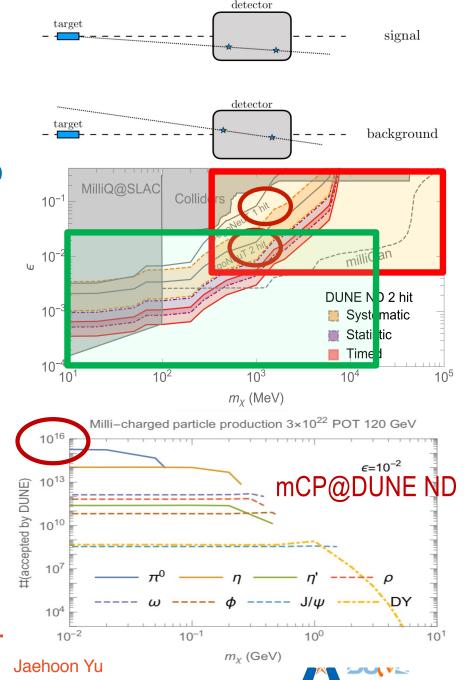
BSM Scenario	Sources	Signatures	Example Experiments
DOINI OCENIANO			
HNL [<u>1]</u>	Colliders	HNL decay	ATLAS, CMS, FASER, Belle II,
	Nuclear decays	Nuclear decay kinematics	KATRIN/TRISTAN, HUNTER
	Fixed target	HNL decay	DUNE ND, SHiP, ICARUS,
	Atm. & solar ν s	Distorted recoil spectrum	DUNE, HK, IceCube/DeepCore,
		HNL decay, double bangs	
N	Early Universe	Cosmological parameters $(N_{\rm eff})$	Simons Observatory, CMB-S4,
Non-unitarity [2]	Beam & Atm. νs	Deviations from 3-ν mixing (ND & FD)	DUNE, ESSνSB, HK,
LED [<u>2]</u>	Reactor ν s	Distortion of oscillated spectra (FD & ND)	JUNO, TAO,
	Beam νs		DUNE,
	Atm. νs	Anomalous matter effects	Icecube, KM3NeT,
NSI & light mediators [2, 4]	Reactor & Spallation sources	Distortion of CE\(\nu\)NS rate	COHERENT, CONNIE, CONUS,
	Solar, Beam, Atm & SN ν s	Anomalous matter effects	DARWIN, DUNE, T2HKK, HK, IceCube,
	Beam ν s	Anomalous appearance, $\nu-e^-$ scattering, tridents	DUNE ND, T2HK ND, IsoDAR,
	Collider ν s	Distortion of CC spectrum	FASERν,
Long-range	Solar & Atm ν	Anomalous matter potential	HK, JUNO, DUNE,
forces [2]	UHE Astrophysical nus	Distorted flavor ratios	HE Neutrino Telescopes
ν -DM interact. [2]	Reactor & solar ν s	Distorted oscillated spectra, or	JUNO,
	Beam ν	time-dependent oscillation params.	DUNE,
	UHE Astrophysical ν s	Distorted flavor ratios & spectra	HE & UHE Neutrino Telescopes
u self interact. [3, 12]	SN νs	SN extra energy loss, distortion in neutrino spectra	DUNE, HK, JUNO,
	UHE Astrophysical ν s	Distorted spectra	HE & UHE ν telescopes
	Early Universe	Effects on CMB, BBN, & structure formation	CORE, PICO, CMB-S4
	Beam & Collider ν s	Missing energy & p_T in $ u$ scattering	DUNE ND, Forward Physics Facility,
u decay $[2]$	Reactor ν s		JUNO,
	Beam ν s	Distortion of oscillated spectra	DUNE, MOMENT, ESS ν SB, HK,
	Atm. νs	7,00	INO-ICAL, KM3NeT-ORCA,
	UHE Astrophysical $ u$ s	Distorted flavor ratios & spectra	HE & UHE Neutrino Telescopes
CPT violation [2]	Beam ν s	Different ν and $\bar{\nu}$ osc. params.	DUNE, ESS\(\nu\)SB, HK,
	Atm. νs		IceCube, DUNE,
	UHE Astrophysical $ u$ s	Distorted flavor ratios & spectra	HE & UHE Neutrino Telescopes
Lorentz violation [2]	Beam ν s	Sidereal modulation of event rate	DUNE, ESS\(\nu\)SB, HK,
	Atm. νs		IceCube, DUNE,
	UHE Astrophysical $ u$ s	Distorted flavor ratios & spectra, velocity dispersion	HE & UHE Neutrino Telescopes
Quantum decoh. [2]	Beam ν s	Distortion of oscillated spectra	DUNE, KM3NeT, IceCube, HK,
	Atm. νs	Atm. ν s	
	UHE Astrophysical νs	Distorted flavor ratios	HE Neutrino Telescopes
B violation [5]	Detector mass	Nucleon decay, $n-\bar{n}$ oscillations	DUNE, HK, JUNO,
Dark Matter [6, 7]	DM annihilation, DM decay	Excess of ν s from Sun or Earth	HK, DUNE, IceCube
	Boosted DM, slow-moving DM	Scattering, or up-scattering & decay	TIT, DONE, recease
	Fixed target	Decay	DUNE, T2HK, SBN, FASER $ u$,
		Scattering, or up-scattering & decay	
Milli-charged particles [7]	Fixed target	Scattering	DUNE ND, T2HK ND,
	Atmosphere	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	DUNE, HK, JUNO,

Take Home Messages

DUNE is a multi-purpose v experiment best fit to explore rich BSM topics

<u>DUNE compliments the Energy Frontier</u> <u>experiments on BSM physics</u>

<u>DUNE Phase – II with the full suite of detectors</u> <u>and doubled beam intensity are essential</u> to fully exploit its BSM physics potential


Back Up Slides

Milli-Charged Particle Search

- mCP w/ charge < Q_{quark}
- Production via meson decays, DY
- Identify the signal using multiple
 e⁻ recoils by mCP and link them to
 point back to the source position
 & reject non-beam backgrounds
 - Tested with ArgoNEUT (~0.17m³)
 - DUNE ND V~60m³~350*V_{ArgoNEUT}
 - Difference in the beam E and large POT produce large number of mCP in a broad mCP mass range
 - 570m distance from target to ND could cause matter effect

