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Low(er) Energy v have a big role in DUNE!

both in Phase 1, as well as expanded opportunities with Phase 2

Phase II FD
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See talks by Gina and Chris
for overview and “Phase I”
vs. “Phase II” details.
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https://indico.fnal.gov/event/22303/contributions/244925/attachments/157291/205763/Snowmass-CD-1RR.pdf
https://indico.fnal.gov/event/22303/contributions/244927/attachments/157300/205696/DUNEphysics_SnowmassSeattle22_ChrisMarshall.pdf

Supernova and Solar Neutrinos

Supernova Burst
DUNE, Eur.Phys.J.C 81 (2021) 5, 423

- Unique and rich astrophysics program.
- Neutrino properties (e.g. mass ordering)
- Few second burst w/ 10%-10° @ 10 kpc

Solar Neutrinos
Capozzi, Li, Zhu, Beacom PRL 123 (2019) 13, 131803

- 8B and potentially hep neutrino fluxes.
- Solar neutrino mixing
- continuous flux of neutrinos

Refer to talk by Daniel Pershey for more details on this SNB and solar neutrinos
See also “Low Energy Physics in Liquid Argon” workshop summary / whitepaper
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https://indico.fnal.gov/event/22303/contributions/244933/
https://inspirehep.net/literature/2043497

sub-GeV Neutrinos
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“[...] detailed event reconstruction capability of [LArTPCs]. This allows
for studying the subGeV atmospheric neutrino component, which bears
a rich oscillation phenomenology, strongly dependent on the matter
potential sourced by the Earth.”

JHEP 05 (2022) 187, Kelly, Machado, Martinez-Soler, Perez-Gonzalez
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Lower energy beam neutrinos:
- 2nd oscillation maximum
- Oscillation and BSM physics @ Near Detector



BSM / Neutrinos as Backgrounds

v e
meeemeeeea 2 e
...... X X =
ey
v e - W +
Y e“/p | e /p
Il] E=sismsas e o .
X Visible in the detector fiducial volume
V*
_ Fig. 20 The inelastic BDM signal under consideration.
X
X1 smmmmmmmmmgmmmmmeeee X1
E\V *
e = e

Fig. 18 Production of fermionic DM via two-body pseu-
doscalar meson decay m — vV, when My < mu (top) or via
three-body decay m — yxX (center) and DM-electron elastic
scattering (bottom).

Many examples in literature. Taking some diagrams from DUNE’s “Prospects for

Beyond the Standard Model physics searches ...” [Eur.Phys.J.C 81 (2021) 4, 322]

DUNE provides a rich program for Beyond
the Standard Model searches.

sub-GeV Dark Matter produced directly in
the beam is a centerpiece of this program.

See Kevin’s talk for more details on this.
Neutrino interactions are a background.
Uncertainty on their rate, at low energies in
particular, impacts sensitivity and physics

reach.

Talks by Pilar Coloma [link], Alex Sousa [link], and Jaehoon
Yu [link] in Tuesday’s session provide broad overview.


https://indico.fnal.gov/event/22303/contributions/244939/
https://indico.fnal.gov/event/22303/contributions/244934/
https://indico.fnal.gov/event/22303/contributions/244935/
https://indico.fnal.gov/event/22303/contributions/244936/

Potential New Directions in Phase ||

How can new technologies complement / expand existing program?

Many ideas aiming to leverage FD underground environment, as well
as multi-detector and MW beam setup at the ND.

- OV[))[)) 35‘/(
- CEvNS glow from a supernova /fv\

- Diffuse Supernova Neutrino Background 3 %
- Dark Matter searches L
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Cartoon from A. Mastbaum Neutrino 22 talk

Spin-independent WIMP nucleon cross section [cm?
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arXiv:2005.04824, Church, Jackson, Saldana

Mastbaum, Psihas, Zennamo, arXiv:2203.14700
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https://arxiv.org/abs/2203.14700
https://arxiv.org/abs/2005.04824

Extracting Physics with Low(er) Energy vs

DUNE data

This is a chain that can be applied to most topics of interest, and to any detector technology, planned or
conducting R&D.
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Will walk through this chart and attempt to make relevant considerations.




The Data at Low(er) Energies

DUNE data
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\What Neutrinos?

MicroBooNE DATA : pBooNE

Marley Simulation CC Supernova ve Event

electron

de-excitation y

BNB Run: 16341 Subrun: 27 Event: 1359

GeV-scale 100s of MeV Few-10s of MeV

Examples of v_ interactions in LAr. Final-state appearance varies significantly depending on the energy.

- Potentially different design and analysis considerations for different regimes.

- At the same time, MeV-scale performance improvements can benefit GeV-scale program.
[Friedland, Li Phys.Rev.D 99 (2019) 3, 036009] & [Castiglioni, et al. Phys.Rev.D 102 (2020) 9, 092010]



Detector response: electrons and y
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Radiative losses a lower fraction of total: Below 10 MeV photons Compton scatter, losing a

- “track-like” EM showers small fraction of their energy in “blips”.
- Stochastic photons, event-to-event variation in

topology 10



Detector response: protons

lllustrative plot. Pip Hamilton’s PhD thesis on T2K
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Protons range out quickly due to high dE/dx.

Gas detector like ND-GAr brings new capabilities in tracking and measuring
kinematics of low-energy protons.

See talk by Jen Raaf [link] @ 10 AM Thursday session.
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https://spiral.imperial.ac.uk:8443/handle/10044/1/26933
https://indico.fnal.gov/event/22303/contributions/244942/

Triggering on Low(er) Energy vs

DUNE data
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Low-Thresholds

13



Low-Thresholds

Cold electronics have had a huge impact on the ability to reconstruct low-energy activity

Temperature Dependence of Noise in TPC
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https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1001-TECH.pdf

Low-Thresholds
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Can we outperform?
Where to go from here?
What complements this technology?

ROI efficiency

Cold electronics have had a huge impact on the ability to reconstruct low-energy activity

MicroBooNE preliminary

fnal

MICROBOONE-NOTE-1076-PUB
ROBOONE-NOTE-1076-PUB.pdf

e

low-threshold reconstruction [this work]
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https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1001-TECH.pdf

Triggering on MeV-scale Physics in DUNE

W. Castiglioni, et al., Phys. Rev. D, 102(9):092010, 2020

Low-Energy Physics in Neutrino LArTPCs, arXiv:2203.00740

SNv, CC
E, = 30 MeV
E, =20 MeV

MARLEY event generator

How to mitigate backgrounds:

- Sophisticated Triggers

- Shielding (e.g. Capozzi, Li, Zhu, Beacom PRL

123 (2019) 13, 131803)

Underground Ar [see next NF session]
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https://arxiv.org/abs/2203.00740

Calibrations and Energy Measurements

DUNE data
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Calibrations @ FD

= DULsinEU
A other DULs
® new DULs

Low energy physics program has particular calibration
needs:

- Neutron and Compton scatters

- MeV-scale electrons vs. higher energy showers.

- particle-species dependent charge quenching and
Light Yield.

Important for each module to have adequate calibration
strategy (intrinsic + artificial) that can meet the needs of this
physics program.

Underground environment is “quiet” by design. Fewer cosmogenic sources traditionally leveraged

in LArTPCs thus far.

Value of existing detectors, both in designing calibration strategies, and providing constraints on

detector physics parameters.

18



Light Collection

Scintillation light in LArTPCs key to extract full 3D position.
“Charge-to-light” matching used to “time” interaction.

Enhancements to scintillation light collection can further expand
reach and opportunities for event tagging.

DUNE, Eur.Phys.J.C 81 (2021) 5, 423
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high Light Yield can further bring
improvements to calorimetric
energy reconstruction 19



Calibrations with Multiple FD Modules

Horizontal Drift Vertical Drift

E I prasen

Phase II: no FD upgrade /

Precious statistics from all 4 FD modules for DUNE Phase II.

E I phase: »
// Important for modules to satisfy the needs of the beam oscillation program.

& 4
B ///‘—
// — Ensure datasets from different detectors can be combined effectively.
e B 20

Years



Neutrino Interaction Modeling
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Interaction Cross-Sections

Modeling uncertainties on “°Ar cross-section
calculations impact ability to measure the flux of the
sources we are interested in

- Calculations focus on inclusive channel

- MARLEY generator [Gardiner, Phys. Rev. C 103,
044604] recent development focusing on
de-excitation modeling.

- Need for experimental data

Input can come from:
- Measurements of 10s of MeV v-Ar interactions
- MeV activity in higher energy neutrinos
- Further theory / generator developments

Discussion contained in “Low-Energy Physics in Neutrino LArTPCs”
[arXiv:2203.00740] and references therein
Summary of LEPLAr workshops, prepared for Snowmass
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https://arxiv.org/abs/2203.00740

Final States / v Energy Reconstruction

Average Fractional Truth Particle Energy

W. Castiglioni, et al., Phys. Rev. D, 102(9):092010, 2020

SNv, CC
E, = 30 MeV
E, =20 MeV

MARLEY event generator
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Energy “budget” split amongst final-states
- Important to model different contributions
- Important to tag and reconstruct final-states

Significant event-to-event variation.

o cheated space points

neutrons
-+ protons

< nuclei

-« positrons P i
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New Analysis Tools and Techniques

DUNE data

We are continuously devising new ways to analyze and extract more information from LArTPCs

R&D in analysis methods offers exciting opportunities for low-energy physics program in DUNE
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- Aninvestment in the future potential for DUNE
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ArgoNeuT

ArgoNeuT, Phys.Rev.D 99 (2019) 1, 012002 ArgoNeuT, Phys.Rev.D 99 (2019) 1, 012002
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sub-GeV: MicroBooNE “LEE” Results

MicroBooNE released in 2021 its first results investigating the MiniBooNE “Low Energy Excess”
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Major milestone for LArTPC technology, very much relevant to sub-GeV neutrino interactions.

Years of analysis R&D development in the making - even after demonstration of technology
performance - on the tail of the Snomwass process.

Contributing to broaden scope and reach of BSM searches in neutrino experiments.
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.241801
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.111801
https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1116-PUB.pdf
https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1116-PUB.pdf

Detector Technologies for Phase |l
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R&D Efforts Targeting Low-Energy

CHARGE (e-—)

Talk by Fernanda Psihas [link] on dopants for increased charge yield

r 5.5 MeV a-particle D.F. Anderson ]
I 9x Cl e 3
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Talk by Chris Jackson [link] on Underground Argon solutions

THEIA25

Talk [link] by Gabriel Orebi Gann on THEIA module

Many ideas: dope the argon...clean the argon...or get

rid of the argon...
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https://indico.fnal.gov/event/22303/contributions/244946/
https://indico.fnal.gov/event/22303/contributions/244945/
https://indico.fnal.gov/event/22303/contributions/244944/

R&D Efforts Targeting Low-Energy

PoF - Power housing unit (5 warm Transmitter laser diodes)

Broad landscape for R&D in LArTPCs that can build on and
enhance existing detectors

[see Angela Fava’s Neutrino 22 talk for a very nice overview]

Pixel detectors, e.g. Q-Pix. Talk by
Brooke Russell [link]

]
X

HV-LC PoF supply cold board

LV-HC PoF supply board
(3 cold Receivers on heatsink)

(2 cold Receivers on heatsink)

charge Amplification in LAr.

Cathode

Photodetectors for HV surfaces, and
signal/power over fiber transport
Active and successful tests @ CERN g



https://zenodo.org/record/6717705#.YtdCwezMI-Q
https://indico.fnal.gov/event/22303/contributions/244943/

Conclusions

DUNE has an exciting road ahead with many clear scientific questions to address.
Excitement for the unknowns we may learn from a broad and diverse physics program.
Achieving and expanding possibilities tied to Low(er) energy Neutrinos can support:

- Strong(er) astrophysics program in FD

- Exciting prospects for BSM searches and important role of sub-GeV neutrinos in ND

- Expanded physics scope with detector and analysis R&D

Coordinate strategically: achieve performance that is greater than the sum of the parts.

1 215l ‘ @ @
Neutrino Energy (Ge*

e (\ =~ NEUTRINO EXPERIMENT
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