
# DUNE Expanded Scope Session: 0vββ

Julieta Gruszko
Snowmass Community Summer Study
July 20, 2022

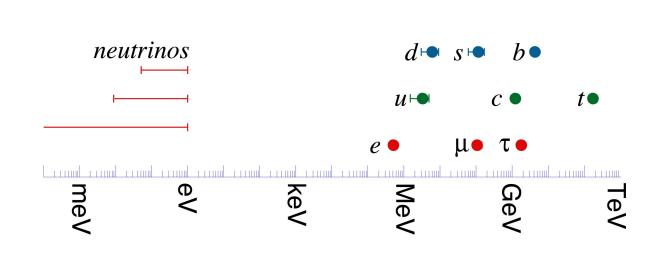






## **Outline**

- Why look for 0vββ?
- 0vββ sensitivity and discovery
- Current status and near-term future


Why look for  $0v\beta\beta$ ?

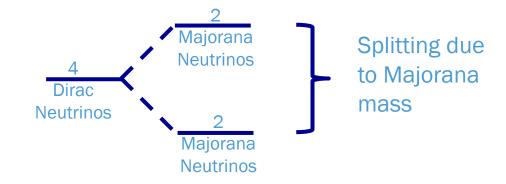
#### **Motivating BSM Physics**

- Need answers to:
  - What is dark matter?
  - What is dark energy/the mechanism behind the cosmological constant?
  - What generates neutrino mass?
  - What created the matter/antimatter asymmetry?
- Would like answers to:
  - Naturalness problems
  - CP conservation in QCD
  - Unification, flavor, etc...

#### **The Surprising Neutrino Mass**

- A reminder: neutrino mass is not in the Standard Model!
- This is one of the few observations we have of Beyond-the-Standard Model physics
- Another surprise: neutrino mass is very small




#### **The Surprising Neutrino Mass**

## Two options for neutrino mass terms:

- Dirac mass:
  - Requires two **non-interacting** new fields,  $\nu_R$  and  $\overline{\nu_L}$
  - Leads to hierarchy problem
- Majorana mass:
  - No new fields required;  $\overline{\nu_R} = \nu_R$  and  $\nu_L = \overline{\nu_L}$
  - Can be generated by new physics at TeV GUT scale
- Both may be present; any non-zero Majorana mass makes the neutrino a Majorana fermion
- Majorana neutrino masses can be generated by a range of models

#### The Type I See-Saw Mechanism

- Including both Majorana and Dirac mass terms can generate two light neutrinos,  $\nu$  and  $\bar{\nu}$ , and two heavy neutrinos, N and  $\bar{N}$
- If the Majorana mass term is of the GUT scale (~10<sup>14</sup> GeV) and Dirac mass term is of EW scale (~100 GeV):
  - $-m_{\nu} \sim 0.1 \text{ eV}$
  - $-m_N \sim 10^{14} \text{GeV}$
- This gives a "natural" neutrino of the correct mass by introducing a new GUTscale particle





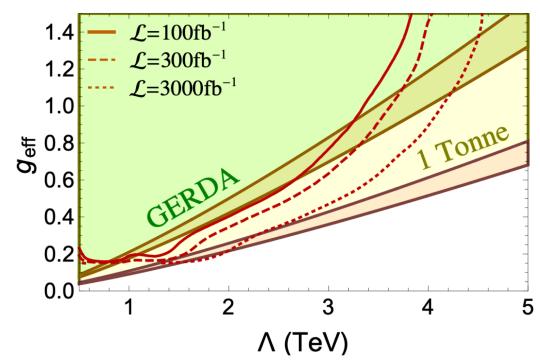
#### **The Matter Asymmetry Problem**

- Today, all the structure we see in the universe is made up of matter, with no significant quantity of antimatter
- Baryon asymmetry measurements give  $\eta \equiv \frac{n_B n_{\overline{B}}}{n_\gamma} \sim 6 \times 10^{-10}$
- We believe this asymmetry has to have been generated dynamically, not as an initial condition

#### Making an Asymmetry: The Sakharov Conditions

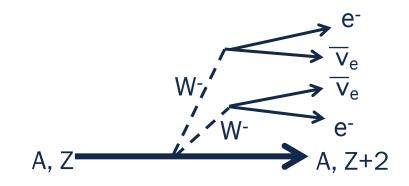
In 1967, Sakharov proposed 3 conditions required for baryongenerating interactions that would generate an asymmetry:

- 1. Baryon number violation From SM at high temperature
- 2. Interactions out of thermal equilibrium ( ) Majorana neutrinos can do this in many models
- 3. C and CP violation: need more than the CP violation observed in the SM (even if  $\delta_{CP}$  is maximal)


) Majorana neutrinos can do this in many models

Majorana neutrinos could be a low-energy signature of the high-energy physics that generated baryon asymmetry

#### Other Majorana Mass Mechanisms and Model-Building


- There are many mechanisms beyond Type I see-saw that would generate neutrino mass
- Some generate the baryon asymmetry or dark matter candidate particles
- Many of these also predict new particles that could be observed at accelerators (O(1-10's of TeV))
- Many models of flavor predict Majorana neutrinos with specific Majorana phases

Comparing LHC and 0vββ limits on TeV-scale Lepton number violation



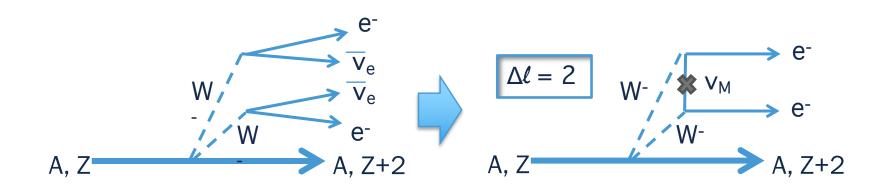
Peng, Ramsey-Musolf, and Winslow Phys. Rev. D **93**, 093002 (2016)

# Standard Model: 2vββ



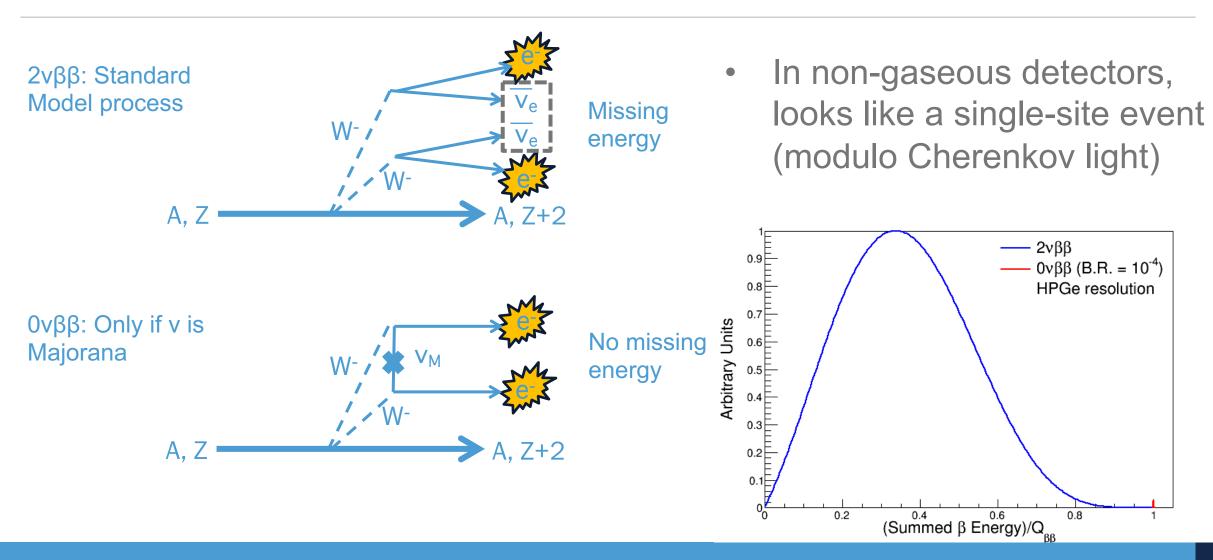


#### **Double-Beta Decay**


- For certain even-even nuclei, single beta decay is disallowed b/c of energy or momentum
- Instead, they double-beta decay
- Second-order weak process  $T_{1/2} \sim 10^{19} 10^{21}$  years
- Electron capture variant is longest-lifetime process ever observed

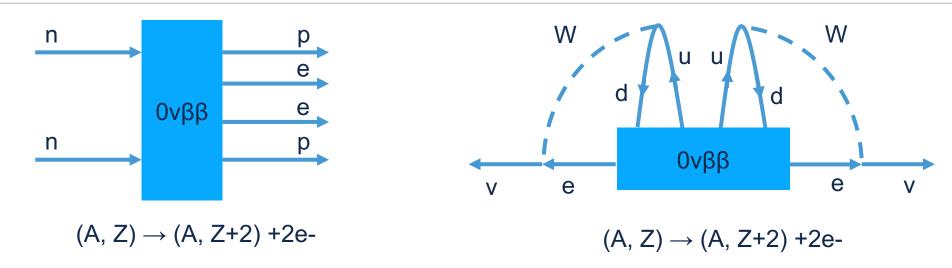
#### **Double-Beta Decay Isotopes**

- 35 naturally-occurring isotopes are capable of double-beta decay; we've observed it in 14 of these
- These 14 "golden nuclei" are particularly well-suited to experiments:
  - High Q-values
  - High abundance or ability to enrich (with some exceptions)
  - Other abundant isotopes of the element not highly radioactive


| Double-beta<br>candidate | <i>Q</i> -value<br>(MeV) | Phase space $G_{01}(y^{-1})$ | Isotopic abundance<br>(%) | Enrichable by centrifugation |
|--------------------------|--------------------------|------------------------------|---------------------------|------------------------------|
| <sup>48</sup> Ca         | 4.27226 (404)            | $6.05\times10^{-14}$         | 0.187                     | No                           |
| <sup>76</sup> Ge         | 2.03904 (16)             | $5.77\times10^{-15}$         | 7.8                       | Yes                          |
| <sup>82</sup> Se         | 2.99512 (201)            | $2.48\times10^{-14}$         | 9.2                       | Yes                          |
| $^{96}\mathrm{Zr}$       | 3.35037 (289)            | $5.02\times10^{-14}$         | 2.8                       | No                           |
| <sup>100</sup> Mo        | 3.03440 (17)             | $3.89\times10^{-14}$         | 9.6                       | Yes                          |
| <sup>116</sup> Cd        | 2.81350 (13)             | $4.08\times10^{-14}$         | 7.5                       | Yes                          |
| <sup>130</sup> Te        | 2.52697 (23)             | $3.47\times10^{-14}$         | 33.8                      | Yes                          |
| <sup>136</sup> Xe        | 2.45783 (37)             | $3.56\times10^{-14}$         | 8.9                       | Yes                          |
| <sup>150</sup> Nd        | 3.37138 (20)             | $1.54\times10^{-13}$         | 5.6                       | No                           |

#### **Neutrinoless Double-Beta Decay**



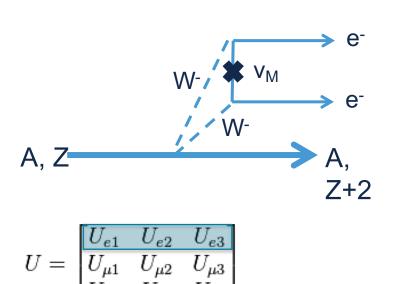

- If neutrinos are Majorana, 0vββ could occur
- Lepton number conservation is violated by 2 units
- In this case, I've drawn the exchange of a light neutrino, but you can think of that "x" as a contracted diagram of any sort (with new physics in it)

#### **The Decay Signature**



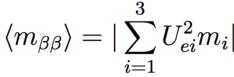
Department Name 14

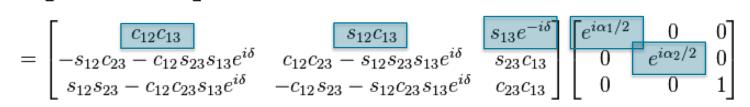
#### Majorana Neutrinos and 0vββ




Model-independent implications of 0vββ:

- Lepton number violation
- Neutrino-antineutrino oscillation, implying a non-zero Majorana mass term The mechanism of  $0\nu\beta\beta$  determines the rate along with the parameters of the model


0vββ Sensitivity and Discovery


#### The 0vββ Rate for Light Majorana Neutrino Exchange



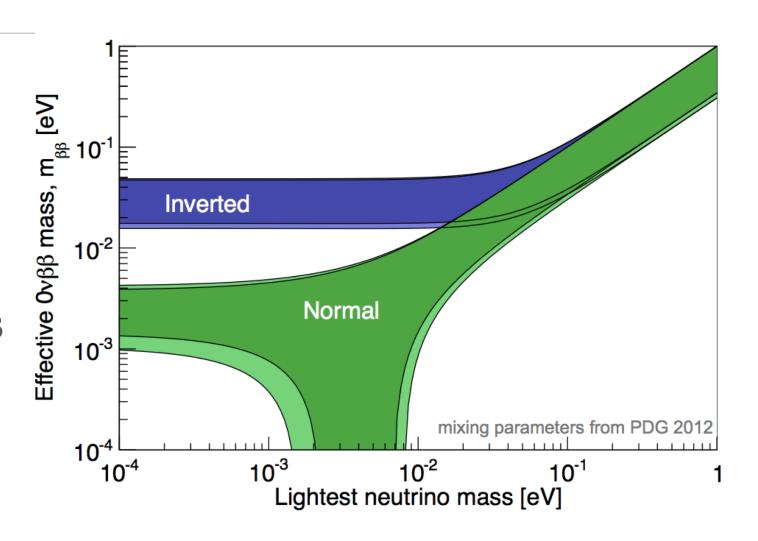
Effective Majorana mass for light neutrino exchange:

$$\langle m_{\beta\beta}\rangle = |\sum_{i=1}^3 U_{ei}^2 m_i|$$



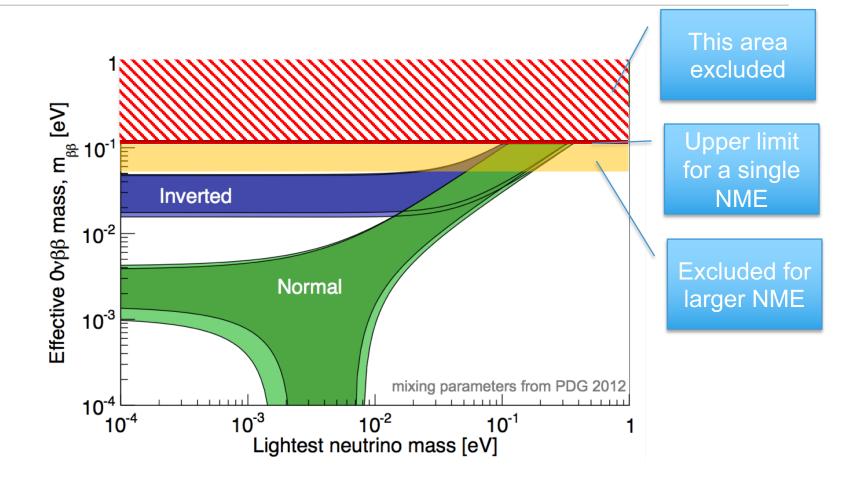


 $c_{ij} = \cos \theta_{ij}$ ,  $s_{ij} = \sin \theta_{ij}$ ,  $\delta = \text{Dirac CP violation}$ ,  $\alpha_i = \text{Majorana CP violation}$ 


Even under simple assumptions, the  $0v\beta\beta$  rate depends on:

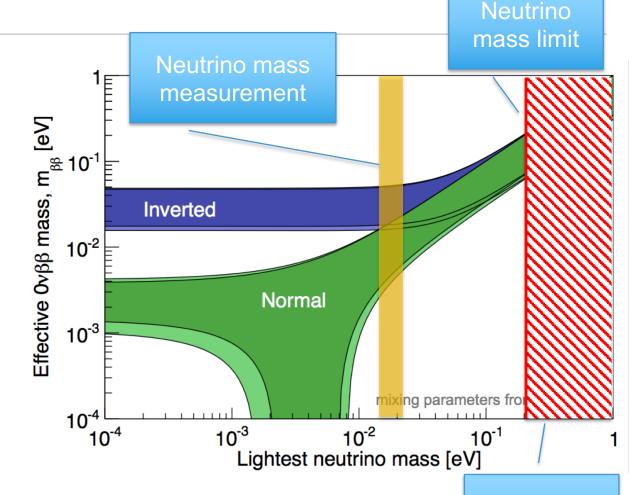
- v mixing angles
- v masses
- mass hierarchy
- 2 totally unknown phases

#### Interpretation of Half-Life Sensitivity


$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} |M_{0\nu}|^2 \left(\frac{\langle m_{\beta\beta} \rangle}{m_e}\right)^2$$
$$\langle m_{\beta\beta} \rangle = |\sum_{i=1}^3 U_{ei}^2 m_i|$$

- Light Majorana neutrino exchange: assumes new physics is at GUT scale, 0vββ mediated by dim. 5 operator
- Used to compare and set goals for future experiments



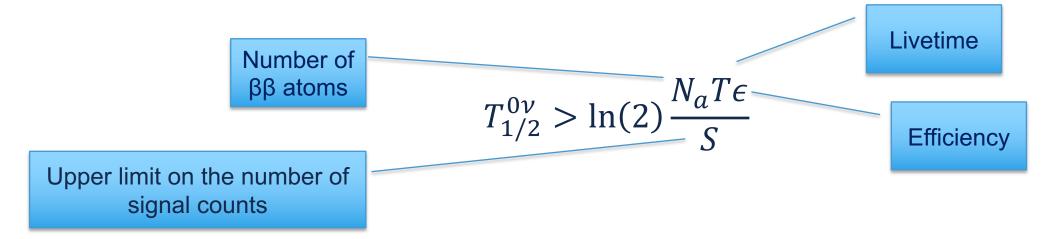

## Translating Half-Life to $m_{\beta\beta}$

- Need to use a particular model, the phase space factor and a nuclear matrix element to turn halflife into m<sub>ββ</sub>
- Results are generally reported for the full set of NMEs, so the upper limit in  $m_{\beta\beta}$  has a range

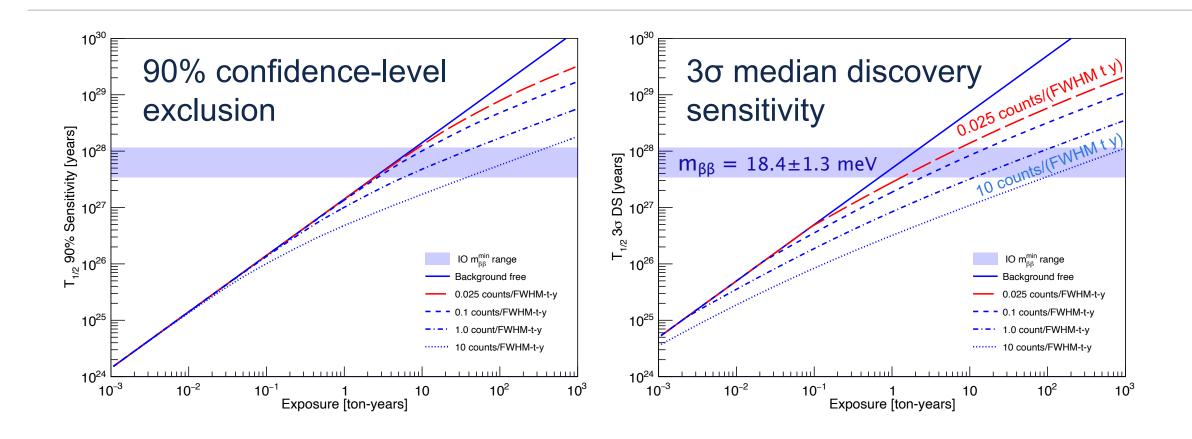


## **Information from Other Neutrino Experiments**

- Light-colored edges are 3σ uncertainty on neutrino mixing and mass splittings
- Measuring hierarchy would tell us which branch we need to look in
- Mass measurement would tell us which vertical band to look in




This area excluded


#### **Discovery and Sensitivity**

After you run a  $0v\beta\beta$  search...

- You either see an excess at the Q value, and fit a peak with some rate to it.
- Or you don't see an excess. In that case, you set a lower limit on half-life:

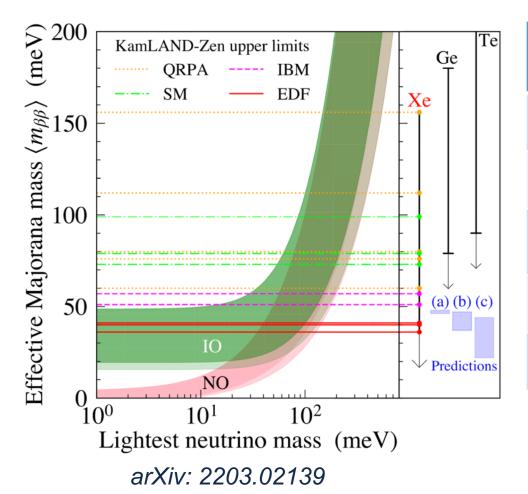


#### Sensitivity vs. Discovery



Background demands are more stringent if you want to make a discovery

#### **Reaching Ultra-Long Half-Life**


- Best-case scenario: quasi-background-free experiment,  $3\sigma = 3$  counts
- Long half-lives mean you need large exposures. For 3-4 counts of 0vββ at...
  - 10<sup>26</sup> years: 100 kg-years
  - $-10^{27}$  years: 1 ton-year
  - 10<sup>28</sup> years: 10 ton-years

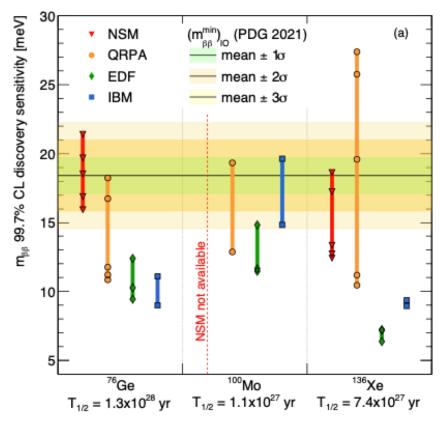
For higher backgrounds, required exposure increases accordingly

- Goal of the next generation of experiments: cover the bottom of the IO region in discovery mode for most nuclear matrix elements
- Implies required discovery sensitivities of 10<sup>27</sup> to 10<sup>28</sup> years

Current status and near-term future

#### **Current Best Limits on 0vββ**




| Experiment      | Isotope           | Exposure<br>[kg yr] | $T_{1/2}^{0 u}$ [10 <sup>25</sup> yr] | m <sub>ββ</sub> [meV] |
|-----------------|-------------------|---------------------|---------------------------------------|-----------------------|
| Gerda           | <sup>76</sup> Ge  | 127.2               | 18                                    | 79-180                |
| Majorana        | <sup>76</sup> Ge  | 26                  | 8.3                                   | 113-269               |
| KamLAND-<br>Zen | <sup>136</sup> Xe | 970                 | 23                                    | 36-156                |
| EXO-200         | <sup>136</sup> Xe | 234.1               | 3.5                                   | 93-286                |
| CUORE           | <sup>130</sup> Te | 1038.4              | 2.2                                   | 90-305                |

NSAC recommendation: quote a range of  $m_{\beta\beta}$  using the largest and smallest available NME from the 4 main calculation methods;  $g_A$ =1.27; no contribution from the contact term

#### The Ton-Scale Generation

- Covering the IO in discovery mode requires O(1 ton) of isotope
- 3 candidate experiments with US participation, in addition to other ongoing efforts: LEGEND, nEXO, and CUPID
- All 3 experiments cover the IO for some matrix elements, and miss for others
- All 3 were evaluated by the DOE in Summer 2021. DOE-NP is seeking international support to pursue all 3 experiments.

#### Discovery Sensitivity for the "Big 3"



10.1103/PhysRevC.104.L042501

#### **Discovery and Sensitivity**

- Larger background = more difference between discovery and exclusion
- Liquid scintillator experiments will have competitive sensitivity, but generally don't publish discovery projections:
  - KL2Z:  $T_{1/2} > 2 \times 10^{27}$
  - SNO+ with increased Te loading:  $T_{1/2} > 1 \times 10^{27}$



From Agostini et al., PRC 104, L042501 (2021)

#### **Timeline for Ton-Scale Experiments**

- Depends on funding availability
- The 3 ton-scale experiments are moving towards CD-1, hoping for projected construction start in ~2024-2025
- Construction estimate: ~5 to 10 years\*
- All plan for 10 years of running, full-exposure results in ~2040

\* Just my guess, 0vββ collaborations may disagree

#### Conclusion

- 0vββ is some of the most exciting physics we can look for! It could provide insight into...
  - The origin of neutrino mass
  - The mechanism that drove baryogenesis
  - The origin of flavor/particle generations, dark matter, etc...
- Regardless of the mechanism, 0vββ would be a direct observation of lepton number violation and prove that neutrinos have Majorana mass
- The coming generation of experiments is exploring very rich parameter space and (hopefully) beginning very soon
- For a competitive  $0v\beta\beta$  search, an experiment would need to have high  $\beta\beta$  isotope mass and ultra-low backgrounds at  $Q_{\beta\beta}$