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* The Phase-I ND (ND-LAr + TMS) is sufficient for early physics goals if §cp is —nt/2

» For high significance, and to meet P5 goals, a detector more capable than TMS is needed at the near site

« ND-GAr meets the requirements to enable 5 CPV significance for a broad range of §cp values, and also enables an
extensive BSM physics program
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ND-GAr Overview
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NEUTRINO

[ OUTER FIELD
ND-GAr Reference Design
_ Outer =77
1 ALCETETRC Readout Chamber ‘
A Cryogenic s
Feedcan . /. lnner
6, SC Magnet Coils Readout Chamber
== Central
Readout Chambers
Stayed
Heads
—— « TPC based on ALICE TPC design
Argon Gos at 10 bar « 5m diameter, central drift electrode with two 2.5m drift regions Possible configuration of

+ MWPC-based charge readout chambers, new chambers for Central Readout Chambers
central region e

HPQTPC

ECAL based on CALICE hadron calorimeter design
» Scintillating layers with mix of tiles and strips, SiPM readout

Superconducting solenoid based on JINR MPD design
* 0.5T central field

+ Solenoid vacuum vessel acts as the TPC pressure vessel to
contain gas at 10 atm

« Partial return yoke to allow LAr-exiting particles to enter ND-GAr

Muon tagger
» Active layer outside iron yoke to tag penetrating particles
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DEEP UNDERGROUND NEUTRINO EXPERIMENT

Optimizing ND-GAr Design

* The ND-GAr reference design enables DUNE Phase-Il physics

* Measures v-Ar interactions with low thresholds and high resolution to
Improve systematics

e Comprehensive BSM program

* Now that the timeline for this detector is part of Phase-Il, later than
originally envisioned, we have time to further refine the design
* Ongoing R&D
» Future R&D needed
 Detector design optimization/finalization
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NEUTRINO

Gas Mixture Studies

» Argon-based gas mixture to enable constraints of LAr systematics

 Addition of molecular additive is essential for stable gain/HV operation
* Minimize number of non-Ar interactions
» Maintain good drift-diffusion characteristics
 Achieve sufficient gas avalanche gain

» Better if we can achieve stable operation without quenching all the light
« Enables event/track time-tagging, with light collection system

ND-LAr ND-GAr
NC) Neutron 14 Low energy nuclear
v oo T . v gy
Q" P \|E| H\ reconstruction ® | H ~>Jg H physics and BSM
via TOF )

— — ——

Improved track-matching y n/ (NC) Improved n, y < ]

with ND-LAr | @ B angular reconstruction ® |
& vertex assignment
—— ——
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e-track

classical doping

8

Gas Mixture Studies

D. Gonzélez-Diaz, IGFAE
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Typically, quencher gas added to gaseous detectors to
eliminate scintillation and increase gas gain

Consider a more modern approach, where dopant gas

w does more than quench the light
readout - Initial work at IGFAE focuses on CF4
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NEUTRINO

Gas Mlxture & Light Collection

a

* Photosensor concept for cathode plane (current
R&D work at IGFAE)

556 cm * 125-150 modules, 256 tiles per module, 16 SiPMs per tile
(~32k readout channels)

* Requires active cooling to reduce dark rate to acceptable
level for low E threshold and good timing resolution

 Other possibilities? Maybe LAPPDs? Metalenses?

D. Gonzdlez-Diaz, IGFAE
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Readout Chambers

» Ongoing campaigns for
ALICE IROC/OROC
MWPC-based chamber
characterization at a range
of pressures and with
various gas mixtures

* Next up: Charged particle
test beam run at Fermilab
this Fall

« OROC with new readout
electronics

NEUTRINO
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NEUTRINO

Readout Chambers TPX3Cam

« The readout must be optimized for

+ Alternative ideas for TPC readout
under consideration

 TimePix optical readout

« MicroMegas-based chambers
 GEM-based chambers

Time-over-Threshold  Time-of-Arrival

TPX3Cam

Long-term stability

High spatial resolution (for
momentum reconstruction)

Fast time sampling (for reduced
tracking threshold and improved PID)

High gain/sensitivity (for reduced
energy threshold)

Intensifier

Light-tight
bellow

Stacked
THGEMs

(K. Mavrokoridis/ARIADNE, Liverpool)

« Initial demonstration & testing in gaseous TPC (100mb
CF4) w/dual THGEMs and Am-241 alpha source

 htips://iopscience.iop.org/article/10.1088/1748-
0221/14/06/P06001

bbbbb

(T. Mohayai, FNAL New Initiatives R&D award)
 https://detectors.fnal.gov/seeding-new-ideas/
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NEUTRINO

Electronics & DAQ development

« Baseline design envisioned LArPix ASIC for front-end readout, but now
considering other options

« SAMPA ASIC (designed for ALICE TPC upgrade): Front-end card designed by U
Pittsburgh, Fermilab & ICL, remainder of readout chain developed by ICL

 To be used in upcoming test beam run w/DUNE DAQ Prototype SAMPA front-end card

Prototype TIP + Aggregator

- Aggregator
Digitised ca rd (ICL)

Clusters

56x FEC

Ir ¢

Timing,
Interface, &
Power card (ICL)
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DEEP UNDERGROUND NEUTRINO EXPERIMENT

Field Cage & H ig h VOItage UTA: L. Norman et al. Eur. Phys. J. C 82, 52 (2022)

Ar/CH4 (90%/10%)

10° s

« Baseline ND-GAr design copies
ALICE’s central drift electrode
« Optimized design with a single drift
volume (drift electrode at one end of

cylinder) would simplify light collection
system design, but has challenges

« 5m drift requires higher voltage at the
drift electrode - breakdown voltage

* More diffusion of drifted ionization

A 1mm
# 5mm
= 10 mm
. Pyboltz-Meek

4
10 PyBoltz-Townsend

103.

Voltage at Breakdown (Vp)

electrons -
. 1 N1 N2 n3 4
» ND-GAr will be movable (PRISM LI I 10
concept)
® Need d rObUSt meChanICa| dGSlgn fOr Projected Breakdown Voltage at 10 bar, 1 cm (kV)

the field cage Ar  Xe  ArCFs ArCH; ArCO; CO;  CFq

e Electrostatic and gas ﬂOW simulations Townsend 52.6 75.4 61.7 63.9 68.6 129.5  179.7
(Indlana U) Meek 69.9 98.9 72.1 80.3 87.3 171.2 212.2
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Calibration

ALICE NIM A622:316-367 (2010) P. I-I|amacl:her-B:aumalmn etI al., Plhys. Rlev. DI102, (I)33OOIS (20.20)
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 Laser calibration envisioned to monitor variations in drift velocity and inhomogeneities in drift field,
and ExB effects

« Can adequate signal amplitude be achieved in chosen high-pressure gas mix? If not, alternative calibration
techniques must be developed.
« Perhaps other calibration techniques/systems to consider
« Cosmics

« Radioactive krypton injection
« ?
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Calorimeter

Original

symmetric

design %

New asymmetric
design

» General technology of plastic scintillator tiles and
strips, read out by SiPMs, is well established (a
la CALICE), but some ND-GAr specific

design/optimization work remains Hit distribution|in Z

» Optimization of absorber layers geometry, readout D7 | M RO
ra_nul)arlty, mechanical structure (in progress at U. -
ainz
« Design of low-power front-end electronics suitable for
high channel count, with few 100’s picosecond timing L
resolution, and maybe pulse shape discrimination 0.003 -

« Study needed for specific scintillator materials that 0.002-
enhance neutron detection capabilities, and matching
silicon-based photon sensors
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0.000 -
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DEEP UNDERGROUND NEUTRINO EXPERIMENT

Muon System

* Design depends on particulars of the calorimeter and the magnet

 Current (very preliminary) design is a single layer of muon tagger outside iron
yoke

» Scintillator extrusions? RPCs? MicroMegas?
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NDERGROUND NEUTRINO EXPER

Summary =

Phase II: no ND Upgrade

* An upgraded ND is essential for high-significance
CP violation measurement

« ND-GAr reference design meets these needs and enables
DUNE Phase-Il physics goals

» Detector design optimization can improve on that
reference, and perhaps reduce costs?
« Several areas of active R&D

« Gas mixture characteristics (scintillation light, diffusion,
drift velocity, HV breakdown...)

« Light collection system (SiPMs, LAPPDs, Metalenses,...) s 50% of 3, values

- Readout chambers (MWPC, GEM, MicroMegas, Optical T
readout, ...) % 2 4 6 8 10 12

» Front-end readout electronics HI

Many opportunities for new groups to join these lines of research or
bring their expertise from other areas to propose new ideas
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Extra Slides
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DEEP UNDERGROUND NEUTRINO EXPERIMENT

Gas Mixture Studies

Photon Energy, eV

20 15 10 9 8 7 * Noble gases scintillate in VUV range
i o 1Ncmmpnonca>11 i - « Photoelectric effect causes
' | feedback/instability in wire chambers
* Typically, quencher gas added to
gaseous detectors to eliminate

scintillation and increase gas gain

« Consider a more modern approach,
where dopant gas does more than
guench the light

50 = T * |nitial work at IGFAE focuses on CF4
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« |f CP violation is maximal, the Phase-I ND (ND-LAr + TMS) suffices

* If nature is not so kind, a detector more capable than TMS is needed at the near site
« ND-GAr meets the requirements to enable 5 CPV significance for a broad range of §.p values
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DEEP UNDERGROUND NEUTRINO EXPERIMENT

Mag net deSig n A. Bersani, A. Bross, et al.

» Superconducting coils with pressurized
region containing HPgTPC and ECAL
 Central field 0.5T, 2% uniformity
« Stray fields: negligible in SAND, ~10G in ND-
LAr FV
» Upstream window in return yoke to

minimize material between ND-LAr and
ND-GAr

* Major developments since last meeting:
« Completed design document (DocDB 24430)

* Includes technical specs & requirements, material
budgets, FEAS, installation procedure
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https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=24430

DEEP UNDERGROUND NEUTRINO EXPERIMENT

ECAL MOdUIGS S. Ritter, U. Mainz (possible rail)
» Scintillator + Lead sandwich

8 high-granularity tile layers
(07 mm Pb + 6 mm SCint) scintillator+lead blocks

» 34 crossed strip layers
(1.4mm Pb + 10 mm scint)

 Aluminum frame

* Tech transfer from CALICE
and other experiments for
readout ~

« MPPC/fiber coupling for strips

* Prototyping in progress at U.
Mainz

cryostat+magnet

Tile layers

main structural aluminum frame
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NEUTRINO

ECAL Neutron/Photon Pulse Shape Discrimination

* Work in progress w/experimental test setup at Mainz

Distinguish between photons from i® and neutrons.
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Neutron and photon-induced clusters are
separated based on:

Total number of hits in the cluster.
Total energy of the cluster.

Maximum hit energy.
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S. Ritter

Our project
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Use difference in scintillation profiles to

bring additional information:

Pulse Shape Discrimination (PSD)

PSD techniques based on the difference in the long decay
constants: compare total charge to charge in the tail.
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