ND-GAr R&D

Jennifer Raaf (Fermilab)
Seattle Snowmass Summer Meeting
July 20, 2022

DUNE Phase-II Near Detector

CP Violation Sensitivity

- The Phase-I ND (ND-LAr + TMS) is sufficient for early physics goals if δ_{CP} is $-\pi/2$
- For high significance, and to meet P5 goals, a detector more capable than TMS is needed at the near site
 - ND-GAr meets the requirements to enable 5σ CPV significance for a broad range of $\delta_{\rm CP}$ values, and also enables an extensive BSM physics program

ND-GAr Overview

ND-GAr Reference Design

- TPC based on ALICE TPC design
 - 5m diameter, central drift electrode with two 2.5m drift regions
 - MWPC-based charge readout chambers, new chambers for central region
- ECAL based on CALICE hadron calorimeter design
 - · Scintillating layers with mix of tiles and strips, SiPM readout
- Superconducting solenoid based on JINR MPD design
 - 0.5 T central field
 - Solenoid vacuum vessel acts as the TPC pressure vessel to contain gas at 10 atm
 - Partial return yoke to allow LAr-exiting particles to enter ND-GAr
- Muon tagger
 - · Active layer outside iron yoke to tag penetrating particles

Possible configuration of Central Readout Chambers

Optimizing ND-GAr Design

- The ND-GAr reference design enables DUNE Phase-II physics
 - Measures ν -Ar interactions with low thresholds and high resolution to improve systematics
 - Comprehensive BSM program
- Now that the timeline for this detector is part of Phase-II, later than originally envisioned, we have time to further refine the design
 - Ongoing R&D
 - Future R&D needed
 - Detector design optimization/finalization

Gas Mixture Studies

- Argon-based gas mixture to enable constraints of LAr systematics
 - Addition of molecular additive is essential for stable gain/HV operation
 - Minimize number of non-Ar interactions
 - Maintain good drift-diffusion characteristics
 - Achieve sufficient gas avalanche gain
 - Better if we can achieve stable operation without quenching all the light
 - Enables event/track time-tagging, with light collection system

Photosensor for primary scintillation (S1) → time stamping

Charge readout or photosensor for secondary scintillation (S2) \rightarrow 3D space sampling

Gas Mixture Studies

- Noble gases scintillate in VUV range
 - Photoelectric effect causes feedback/instability in wire chambers
- Typically, quencher gas added to gaseous detectors to eliminate scintillation and increase gas gain
- Consider a more modern approach, where dopant gas does more than quench the light
 - Initial work at IGFAE focuses on CF4

Gas Mixture & Light Collection

- Photosensor concept for cathode plane (current R&D work at IGFAE)
 - 125-150 modules, 256 tiles per module, 16 SiPMs per tile (~32k readout channels)
 - Requires active cooling to reduce dark rate to acceptable level for low E threshold and good timing resolution
- Other possibilities? Maybe LAPPDs? Metalenses?

Readout Chambers

- Ongoing campaigns for ALICE IROC/OROC MWPC-based chamber characterization at a range of pressures and with various gas mixtures
- Next up: Charged particle test beam run at Fermilab this Fall
 - OROC with new readout electronics

Readout Chambers

- The readout must be optimized for
 - Long-term stability
 - High spatial resolution (for momentum reconstruction)
 - Fast time sampling (for reduced tracking threshold and improved PID)
 - High gain/sensitivity (for reduced energy threshold)
- Alternative ideas for TPC readout under consideration
 - TimePix optical readout (K. Mavrokoridis/ARIADNE, Liverpool)
 - Initial demonstration & testing in gaseous TPC (100mb CF4) w/dual THGEMs and Am-241 alpha source
 - https://iopscience.iop.org/article/10.1088/1748-0221/14/06/P06001
 - MicroMegas-based chambers
 - GEM-based chambers (T. Mohayai, FNAL New Initiatives R&D award)
 - https://detectors.fnal.gov/seeding-new-ideas/

TPX3Cam

Time-over-Threshold Time-of-Arrival

TPX3Cam

THGEMs

Prototype SAMPA front-end card

Electronics & DAQ development

- Baseline design envisioned LArPix ASIC for front-end readout, but now considering other options
 - SAMPA ASIC (designed for ALICE TPC upgrade): Front-end card designed by U Pittsburgh, Fermilab & ICL, remainder of readout chain developed by ICL

Snowmass @ Seattle

To be used in upcoming test beam run w/DUNE DAQ

Field Cage & High Voltage

- Baseline ND-GAr design copies ALICE's central drift electrode
 - Optimized design with a single drift volume (drift electrode at one end of cylinder) would simplify light collection system design, but has challenges
 - 5m drift requires higher voltage at the drift electrode → breakdown voltage
 - More diffusion of drifted ionization electrons
- ND-GAr will be movable (PRISM) concept)
 - Need a robust mechanical design for the field cage
 - Electrostatic and gas flow simulations (Indiana U)

UTA: L. Norman et al. Eur. Phys. J. C 82, 52 (2022)

	Projected Breakdown Voltage at 10 bar, 1 cm (kV)						
	Ar	Xe	Ar-CF ₄	Ar-CH ₄	Ar-CO ₂	CO_2	CF_4
Townsend	52.6	75.4	61.7	63.9	68.6	129.5	179.7
Meek	69.9	98.9	72.1	80.3	87.3	171.2	212.2

ND-GAr R&D

Calibration

ALICE NIM A622:316-367 (2010)

- Laser calibration envisioned to monitor variations in drift velocity and inhomogeneities in drift field, and ExB effects
 - Can adequate signal amplitude be achieved in chosen high-pressure gas mix? If not, alternative calibration techniques must be developed.
- Perhaps other calibration techniques/systems to consider
 - Cosmics
 - Radioactive krypton injection
 - 7

Calorimeter

14

Original symmetric design New asymmetric design

General technology of plastic scintillator tiles and strips, read out by SiPMs, is well established (à la CALICE), but some ND-GAr specific design/optimization work remains

- Optimization of absorber layers geometry, readout granularity, mechanical structure (in progress at U. Mainz)
- Design of low-power front-end electronics suitable for high channel count, with few 100's picosecond timing resolution, and maybe pulse shape discrimination
- Study needed for specific scintillator materials that enhance neutron detection capabilities, and matching silicon-based photon sensors

up-stream

down-stream

Muon System

- Design depends on particulars of the calorimeter and the magnet
 - Current (very preliminary) design is a single layer of muon tagger outside iron yoke
 - Scintillator extrusions? RPCs? MicroMegas?

ND-GAr R&D

Summary

16

- An upgraded ND is essential for high-significance CP violation measurement
 - ND-GAr reference design meets these needs and enables DUNE Phase-II physics goals
- Detector design optimization can improve on that reference, and perhaps reduce costs?
- Several areas of active R&D
 - Gas mixture characteristics (scintillation light, diffusion, drift velocity, HV breakdown...)
 - Light collection system (SiPMs, LAPPDs, Metalenses,...)
 - Readout chambers (MWPC, GEM, MicroMegas, Optical readout, ...)
 - Front-end readout electronics

Many opportunities for new groups to join these lines of research or bring their expertise from other areas to propose new ideas

Snowmass @ Seattle

Extra Slides

Gas Mixture Studies

- Noble gases scintillate in VUV range
 - Photoelectric effect causes feedback/instability in wire chambers
- Typically, quencher gas added to gaseous detectors to eliminate scintillation and increase gas gain
- Consider a more modern approach, where dopant gas does more than quench the light
 - Initial work at IGFAE focuses on CF4

DUNE Phase-II Near Detector

CP Violation Sensitivity

CP Violation Sensitivity

- If CP violation is maximal, the Phase-I ND (ND-LAr + TMS) suffices
- If nature is not so kind, a detector more capable than TMS is needed at the near site
 - ND-GAr meets the requirements to enable 5σ CPV significance for a broad range of $\delta_{\rm CP}$ values

Magnet design

- Superconducting coils with pressurized region containing HPgTPC and ECAL
 - Central field 0.5T, 2% uniformity
 - Stray fields: negligible in SAND, ~10G in ND-LAr FV
- Upstream window in return yoke to minimize material between ND-LAr and ND-GAr
- Major developments since last meeting:
 - Completed design document (<u>DocDB 24430</u>)
 - Includes technical specs & requirements, material budgets, FEAs, installation procedure

A. Bersani, A. Bross, et al.

ECAL Modules

- Scintillator + Lead sandwich
 - 8 high-granularity tile layers (0.7 mm Pb + 6 mm scint)
 - 34 crossed strip layers (1.4mm Pb + 10 mm scint)
 - Aluminum frame
- Tech transfer from CALICE and other experiments for readout
 - MPPC/fiber coupling for strips
 - Prototyping in progress at U. Mainz

ECAL Neutron/Photon Pulse Shape Discrimination

• Work in progress w/experimental test setup at Mainz

S. Ritter

Neutron and photon-induced clusters are separated based on:

- Total number of hits in the cluster.
- Total energy of the cluster.
- Maximum hit energy.

Use difference in scintillation profiles to bring additional information:

Pulse Shape Discrimination (PSD)

PSD techniques based on the difference in the long decay constants: compare total charge to charge in the tail.

JG n

LAr vs. GAr: same neutrino event

- Neutrino interaction with 1 muon, 7 low energy protons, and 9 neutrons
- Lower density gaseous argon → particles travel further (and therefore easier to detect and reconstruct their tracks)

