Underground Argon and Other Low Background R&D July 20th, 2022 **Chris Jackson** **PNNL** #### Dune has great low background potential... #### ... it is deep Neutron nuclear recoil events within a single DUNE module #### **Low Background Physics** #### **Low Background Physics** #### SURF Low Background Module (SLoMo) Concept #### **Neutron Backgrounds** - Neutron (n, γ) reactions in argon directly mimic low energy neutrinos - Cavern rock likely primary source of neutrons (spontaneous fission and (α, n) from U/Th chains) - also from detector components - Neutron shielding - No water shield in current DUNE design - 40 cm of water shielding around detector (proposed by Capozzi, Li, Zhu and Beacom) - √ ~3 order of magnitude reduction Developing the MeV potential of DUNE: Detailed considerations of muon-induced spallation and other backgrounds, G. Zhu, S. W. Li, and J. F. Beacom, Phys. Rev. C **99**, 055810 - Other options - Exploring cryostat designs to increase shielding - ✓ e.g. Boron doped insulation - Planes of (doped) acrylic possible as shielding within the LAr #### **Internal Detector Backgrounds** - Neutrons from internal detector components: - For example, stainless steel in cryostat (1 kton!) - Need ~10³ more radiopure than planned for baseline DUNE to match shielding ✓ But LZ/DarkSide expect further 2 orders of magnitude, so is feasible - R&D required to develop large QA/QC program - Apply techniques used for dark matter experiments at kton-scale Efforts to support continued database development #### Radon Background - Light from α 's or from (α, γ) (~15 MeV) in argon - Radon levels - Target: 2 μBq/kg - This requirement is ~10²-10³ reduction beyond baseline DUNE - Exceeded by DarkSide-50, DEAP-3600: 0.2 μBq/kg - Radon control ideas - Radon removal during purification via inline radon trap - ✓ MicroBoone filtration system (arXiv:2203.10147 [physics.ins-det]) - Emanation measurement materials campaign - ✓ New cryogenic systems, high throughput developments - Surface treatments - Dust control - Radon reduction system during installation and operation Prototype cryogenic radon emanation bench Chris Jackson #### What is Low-Radioactivity Underground Argon #### Atmospheric argon: - ³⁹Ar: 1 Bq/kg (10 MHz/module) 0.57 MeV endpoint - ⁴²Ar: 0.1 mBq/kg 0.6 MeV endpoint but... - Decays to ⁴²K with 3.5 MeV endpoint #### Underground sources of depleted argon exist - Demonstrated in DarkSide-50 - ✓ 1400x reduction ³⁹Ar (air contamination = could be lower) - √ Larger reduction of ⁴²Ar likely - From CO₂ wells in Cortez, CO - Planned for DarkSide-20k and GADMC - Urania plant production target: 300 kg/day - Only vetted source but not large enough for a DUNE-like module DarkSide 50: Phys. Rev. D 93, 081101(R) ³⁹Ar rate: x1400 reduction #### ³⁹Ar and ⁴²Ar Production Atmospheric production dominated by cosmogenic activation ⁴⁰Ar #### What is the ⁴²Ar level underground? - Production calculation: 3 x 10⁻³ ⁴²Ar per ton of crust per year at 3 km w.e. - 7 orders of magnitude less than ³⁹Ar at this depth - But many uncertainties: - Crust or mantle origin - How much argon diffuses into gas field - Likely >10¹⁰ suppression in rate compared to atmosphere | Reaction | Estimated ³⁹ Ar production rate [atoms/(kg _{Ar} day)] | Fraction of total AAr (%) | |---|---|---------------------------| | ⁴⁰ Ar (n, 2n) ³⁹ Ar+
⁴⁰ Ar(n, d) ³⁹ Cl | 759 ± 128 | 72.3 | | $\frac{1}{40}$ Ar $(\mu, n)^{39}$ Cl | 172 ± 26 | 16.4 | | $\frac{^{40}\text{Ar} (\gamma, n)^{39}\text{Ar}}{^{40}\text{Ar} (\gamma, p)^{39}\text{Cl}}$ | 89 ± 19 23.8 ± 8.7 | 8.5
2.3 | | ⁴⁰ Ar (p, 2p) ³⁹ Cl
⁴⁰ Ar (p, pn) ³⁹ Ar | < 0.1 3.6 ± 2.2 | <0.01
0.3 | | 38 Ar(n, γ) 39 Ar | $\ll 0.1 \text{ (UAr)}$
1.1 ± 0.3 (AAr) | -
0.1 | | Total | 1048 ± 133 | 100 | Saldanha et al., Phys. Rev. C 100, 024608 Sharma Poudel, LRT 2022, paper in preparation #### **Next Generation Production** - Need large-scale, cost-effective production - This requires: - High concentration/chemically enriched underground source - Should be parasitic to major underground gas operation - Ideally commercial supplier produces argon - ✓ Could reuse existing Urania infrastructure White paper: A Facility for Low-Radioactivity Underground Argon arXiv:2203.09734 [physics.ins-det] - PNNL working to explore large scale underground argon sources - Preliminary gas analysis indicates mantle origin. - **Supplier:** 3 major U.S. gas producers/suppliers (not disclosed at company request) - **Production rate:** ~5,000 tonnes/year - Ballpark cost: Could be as low as x3 regular argon for 10 kton+ scales NOTE: These are very rough estimates. ## Low Background Module Concept SLoMo (SURF Low Background Module) #### Solar Neutrinos 120 - Precision Δm_{21}^2 - NSI constraints - Precision CNO, test solar metallicity #### **Supernova Neutrinos** - Lower threshold, elastic scatters - Early- and late-time information - Detection beyond Magellanic Cloud - CEvNS glow #### Snowmass White Paper: Low Background kTon-Scale Liquid Argon Time Projection Chambers A. Avasthi¹, T. Bezerra², A. Borkum², E. Church³, J. Genovesi⁴, J. Haiston⁴, C. M. Jackson³, I. Lazanu⁵, B. Monreal¹, S. Munson³, C. Ortiz⁶, M. Parvu⁵, S. J. M. Peeters², D. Pershey⁶, S. S. Poudel³, J. Reichenbacher⁴, R. Saldanha³, K. Scholberg⁶, G. Sinev⁴, J. Zennamo⁷, H. O. Back³, J. F. Beacom⁸, F. Capozzi⁹, C. Cuesta¹⁰, Z. Djurcic¹¹, A. C. Ezeribe¹², I. Gil-Botella¹⁰, S. W. Li⁷, M. Mooney¹³, M. Sorel⁹, and S. Westerdale¹⁴ https://doi.org/10.48550/arXiv.2203.08821 #### **Neutrinoless Double Beta Decay** - Confirm ton-scale signal - Sensitivity beyond inverted hierarchy #### **WIMP Dark Matter** - Competitive high mass search on fast timescale - Confirm G2 signal with annual modulation #### Conclusions - Growing interest in low background DUNE options: - SLoMo, DUNE-beta, SoLAr, *LEPLAr,...* - Low background developments required to make this happen: - Shielding - Materials selection QA/QC - Radon reduction - Underground argon - ✓ Significant suppression of ⁴²Ar expected - ✓ Will require a new underground argon source - Expanded physics program at DUNE possible: - Supernova neutrinos - Solar neutrinos - Neutrinoless double beta decay - WIMP dark matter ### Thank you