

Underground Argon and Other Low Background R&D

July 20th, 2022

Chris Jackson

PNNL

Dune has great low background potential...

... it is deep

Neutron nuclear recoil events within a single DUNE module

Low Background Physics

Low Background Physics

SURF Low Background Module (SLoMo) Concept

Neutron Backgrounds

- Neutron (n, γ) reactions in argon directly mimic low energy neutrinos
- Cavern rock likely primary source of neutrons (spontaneous fission and (α, n) from U/Th chains)
 - also from detector components
- Neutron shielding
 - No water shield in current DUNE design
 - 40 cm of water shielding around detector (proposed by Capozzi, Li, Zhu and Beacom)
 - √ ~3 order of magnitude reduction

Developing the MeV potential of DUNE: Detailed considerations of muon-induced spallation and other backgrounds, G. Zhu, S. W. Li, and J. F. Beacom, Phys. Rev. C **99**, 055810

- Other options
 - Exploring cryostat designs to increase shielding
 - ✓ e.g. Boron doped insulation
 - Planes of (doped) acrylic possible as shielding within the LAr

Internal Detector Backgrounds

- Neutrons from internal detector components:
 - For example, stainless steel in cryostat (1 kton!)
 - Need ~10³ more radiopure than planned for baseline DUNE to match shielding
 ✓ But LZ/DarkSide expect further 2 orders of magnitude, so is feasible
 - R&D required to develop large QA/QC program
 - Apply techniques used for dark matter experiments at kton-scale

Efforts to support continued database development

Radon Background

- Light from α 's or from (α, γ) (~15 MeV) in argon
- Radon levels
 - Target: 2 μBq/kg
 - This requirement is ~10²-10³ reduction beyond baseline DUNE
 - Exceeded by DarkSide-50, DEAP-3600: 0.2 μBq/kg
- Radon control ideas
 - Radon removal during purification via inline radon trap
 - ✓ MicroBoone filtration system (arXiv:2203.10147 [physics.ins-det])
 - Emanation measurement materials campaign
 - ✓ New cryogenic systems, high throughput developments
 - Surface treatments
 - Dust control
 - Radon reduction system during installation and operation

Prototype cryogenic radon emanation bench

Chris Jackson

What is Low-Radioactivity Underground Argon

Atmospheric argon:

- ³⁹Ar: 1 Bq/kg (10 MHz/module) 0.57 MeV endpoint
- ⁴²Ar: 0.1 mBq/kg 0.6 MeV endpoint but...
- Decays to ⁴²K with 3.5 MeV endpoint

Underground sources of depleted argon exist

- Demonstrated in DarkSide-50
 - ✓ 1400x reduction ³⁹Ar (air contamination = could be lower)
 - √ Larger reduction of ⁴²Ar likely
- From CO₂ wells in Cortez, CO
- Planned for DarkSide-20k and GADMC
- Urania plant production target: 300 kg/day
- Only vetted source but not large enough for a DUNE-like module

DarkSide 50: Phys. Rev. D 93, 081101(R)

³⁹Ar rate: x1400 reduction

³⁹Ar and ⁴²Ar Production

 Atmospheric production dominated by cosmogenic activation ⁴⁰Ar

What is the ⁴²Ar level underground?

- Production calculation: 3 x 10⁻³ ⁴²Ar per ton of crust per year at 3 km w.e.
 - 7 orders of magnitude less than ³⁹Ar at this depth
- But many uncertainties:
 - Crust or mantle origin
 - How much argon diffuses into gas field
- Likely >10¹⁰ suppression in rate compared to atmosphere

Reaction	Estimated ³⁹ Ar production rate [atoms/(kg _{Ar} day)]	Fraction of total AAr (%)
⁴⁰ Ar (n, 2n) ³⁹ Ar+ ⁴⁰ Ar(n, d) ³⁹ Cl	759 ± 128	72.3
$\frac{1}{40}$ Ar $(\mu, n)^{39}$ Cl	172 ± 26	16.4
$\frac{^{40}\text{Ar} (\gamma, n)^{39}\text{Ar}}{^{40}\text{Ar} (\gamma, p)^{39}\text{Cl}}$	89 ± 19 23.8 ± 8.7	8.5 2.3
⁴⁰ Ar (p, 2p) ³⁹ Cl ⁴⁰ Ar (p, pn) ³⁹ Ar	< 0.1 3.6 ± 2.2	<0.01 0.3
38 Ar(n, γ) 39 Ar	$\ll 0.1 \text{ (UAr)}$ 1.1 ± 0.3 (AAr)	- 0.1
Total	1048 ± 133	100

Saldanha et al., Phys. Rev. C 100, 024608

Sharma Poudel, LRT 2022, paper in preparation

Next Generation Production

- Need large-scale, cost-effective production
- This requires:
 - High concentration/chemically enriched underground source
 - Should be parasitic to major underground gas operation
 - Ideally commercial supplier produces argon
 - ✓ Could reuse existing Urania infrastructure

White paper:
A Facility for Low-Radioactivity
Underground Argon
arXiv:2203.09734 [physics.ins-det]

- PNNL working to explore large scale underground argon sources
 - Preliminary gas analysis indicates mantle origin.
 - **Supplier:** 3 major U.S. gas producers/suppliers (not disclosed at company request)
 - **Production rate:** ~5,000 tonnes/year
 - Ballpark cost: Could be as low as x3 regular argon for 10 kton+ scales

NOTE: These are very rough estimates.

Low Background Module Concept SLoMo (SURF Low Background Module)

Solar Neutrinos 120

- Precision Δm_{21}^2
- NSI constraints
- Precision CNO, test solar metallicity

Supernova Neutrinos

- Lower threshold, elastic scatters
- Early- and late-time information
- Detection beyond Magellanic Cloud
- CEvNS glow

Snowmass White Paper:

Low Background kTon-Scale Liquid Argon Time Projection Chambers

A. Avasthi¹, T. Bezerra², A. Borkum², E. Church³, J. Genovesi⁴, J. Haiston⁴, C. M. Jackson³, I. Lazanu⁵, B. Monreal¹, S. Munson³, C. Ortiz⁶, M. Parvu⁵, S. J. M. Peeters², D. Pershey⁶, S. S. Poudel³, J. Reichenbacher⁴, R. Saldanha³, K. Scholberg⁶, G. Sinev⁴, J. Zennamo⁷, H. O. Back³, J. F. Beacom⁸, F. Capozzi⁹, C. Cuesta¹⁰, Z. Djurcic¹¹, A. C. Ezeribe¹², I. Gil-Botella¹⁰, S. W. Li⁷, M. Mooney¹³, M. Sorel⁹, and S. Westerdale¹⁴

https://doi.org/10.48550/arXiv.2203.08821

Neutrinoless Double Beta Decay

- Confirm ton-scale signal
- Sensitivity beyond inverted hierarchy

WIMP Dark Matter

- Competitive high mass search on fast timescale
- Confirm G2 signal with annual modulation

Conclusions

- Growing interest in low background DUNE options:
 - SLoMo, DUNE-beta, SoLAr, *LEPLAr,...*
- Low background developments required to make this happen:
 - Shielding
 - Materials selection QA/QC
 - Radon reduction
 - Underground argon
 - ✓ Significant suppression of ⁴²Ar expected
 - ✓ Will require a new underground argon source
- Expanded physics program at DUNE possible:
 - Supernova neutrinos
 - Solar neutrinos
 - Neutrinoless double beta decay
 - WIMP dark matter

Thank you

