Underground Argon and Other Low Background R&D

July 20th, 2022

Chris Jackson
PNNL
Dune has great low background potential...

... it is deep

... it is big

Neutron nuclear recoil events within a single DUNE module
Low Background Physics

- WIMPs
- $0\nu\beta\beta$
- Solar Neutrinos
- Supernova Neutrinos
- ^{39}Ar
- ^{42}Ar
- Internal Alphas/Betas/Gammas
- Neutrons
- radon

Energy range:
- 100 keV
- 1 MeV
- 10 MeV
- 100 MeV
Low Background Physics

SLoMo: arxiv:2203.08821
DUNE-beta: arxiv:2203.14700
SoLAr: arxiv:2203.07501

Also:
Low-Energy Physics in Neutrino LArTPCs:
arxiv:2203.00740
DUNE as the Next-Generation Solar Neutrino Experiment
SURF Low Background Module (SLoMo) Concept

- Standard DUNE-like vertical drift module
- 1-3 kton fiducial volume(s)
- Acrylic box with reflective foils
- Charge readout planes
- SiPM tiles
- Water shielding
- Low radioactivity underground argon
- Cryostat
- Cathode plane
Neutron Backgrounds

- Neutron \((n, \gamma)\) reactions in argon directly mimic low energy neutrinos
- Cavern rock likely primary source of neutrons (spontaneous fission and \((\alpha, n)\) from U/Th chains)
 - also from detector components
- Neutron shielding
 - No water shield in current DUNE design
 - 40 cm of water shielding around detector (proposed by Capozzi, Li, Zhu and Beacom)
 - \(\sim 3\) order of magnitude reduction

- Other options
 - Exploring cryostat designs to increase shielding
 - e.g. Boron doped insulation
 - Planes of (doped) acrylic possible as shielding within the LAr

Developing the MeV potential of DUNE: Detailed considerations of muon-induced spallation and other backgrounds, G. Zhu, S. W. Li, and J. F. Beacom, Phys. Rev. C 99, 055810
Internal Detector Backgrounds

- Neutrons from internal detector components:
 - For example, stainless steel in cryostat (1 kton!)
 - Need $\sim 10^3$ more radiopure than planned for baseline DUNE to match shielding
 - But LZ/DarkSide expect further 2 orders of magnitude, so is feasible
 - R&D required to develop large QA/QC program
 - Apply techniques used for dark matter experiments at kton-scale

Efforts to support continued database development
Radon Background

• Light from α’s or from (α, γ) (~15 MeV) in argon

• Radon levels
 ▪ Target: 2 µBq/kg
 ▪ This requirement is $\sim 10^2$-10^3 reduction beyond baseline DUNE
 ▪ Exceeded by DarkSide-50, DEAP-3600: 0.2 µBq/kg

• Radon control ideas
 ▪ Radon removal during purification via inline radon trap
 ▪ Emanation measurement materials campaign
 ✓ New cryogenic systems, high throughput developments
 ▪ Surface treatments
 ▪ Dust control
 ▪ Radon reduction system during installation and operation
What is Low-Radioactivity Underground Argon

• Atmospheric argon:
 - 39Ar: 1 Bq/kg (10 MHz/module) – 0.57 MeV endpoint
 - 42Ar: 0.1 mBq/kg – 0.6 MeV endpoint but...
 - Decays to 42K with 3.5 MeV endpoint

• Underground sources of depleted argon exist
 - Demonstrated in DarkSide-50
 ✓ 1400x reduction 39Ar (air contamination = could be lower)
 ✓ Larger reduction of 42Ar likely
 - From CO$_2$ wells in Cortez, CO
 - Planned for DarkSide-20k and GADMC
 - Urania plant production target: 300 kg/day
 - Only vetted source but not large enough for a DUNE-like module

39Ar rate: x1400 reduction
39Ar and 42Ar Production

- Atmospheric production dominated by cosmogenic activation 40Ar

What is the 42Ar level underground?

- Production calculation: 3 x 10^{-3} 42Ar per ton of crust per year at 3 km w.e.
 - 7 orders of magnitude less than 39Ar at this depth
- But many uncertainties:
 - Crust or mantle origin
 - How much argon diffuses into gas field
- Likely >10^{10} suppression in rate compared to atmosphere
Next Generation Production

• Need large-scale, cost-effective production

• This requires:
 ▪ High concentration/chemically enriched underground source
 ▪ Should be parasitic to major underground gas operation
 ▪ Ideally commercial supplier produces argon
 ✓ Could reuse existing Urania infrastructure

• PNNL working to explore large scale underground argon sources
 ▪ Preliminary gas analysis indicates mantle origin.
 ▪ **Supplier:** 3 major U.S. gas producers/suppliers *(not disclosed at company request)*
 ▪ **Production rate:** ~5,000 tonnes/year
 ▪ **Ballpark cost:** Could be as low as ×3 regular argon for 10 kton+ scales

NOTE: These are very rough estimates.

White paper:
A Facility for Low-Radioactivity Underground Argon
arXiv:2203.09734 [physics.ins-det]
Low Background Module Concept
SLoMo (SURF Low Background Module)

Solar Neutrinos
- Precision Δm_{21}^2
- NSI constraints
- Precision CNO, test solar metallicity

 Supernova Neutrinos
- Lower threshold, elastic scatters
- Early- and late-time information
- Detection beyond Magellanic Cloud
- CEvNS glow

Snowmass White Paper:
Low Background kTon-Scale Liquid Argon Time Projection Chambers

https://doi.org/10.48550/arXiv.2203.08821

Neutrinoless Double Beta Decay
- Confirm ton-scale signal
- Sensitivity beyond inverted hierarchy

WIMP Dark Matter
- Competitive high mass search on fast timescale
- Confirm G2 signal with annual modulation

Chris Jackson
Conclusions

• Growing interest in low background DUNE options:
 ▪ SLoMo, DUNE-beta, SoLAr, LEPLAr,…

• Low background developments required to make this happen:
 ▪ Shielding
 ▪ Materials selection QA/QC
 ▪ Radon reduction
 ▪ Underground argon
 ✓ Significant suppression of 42Ar expected
 ✓ Will require a new underground argon source

• Expanded physics program at DUNE possible:
 ▪ Supernova neutrinos
 ▪ Solar neutrinos
 ▪ Neutrinoless double beta decay
 ▪ WIMP dark matter
Thank you