Photosensitive dopants and DUNE Phase-II

Fernanda Psihas

Context

Dopants that convert light to charge (**Photosensitive dopants**)might help expand the reach of DUNE phase-II at low energies.

Improvements to energy resolution at low energies will also **impact the current P5 priorities** in the Phase-II precision measurement era.

A LArTPC R&D program with potential to expand DUNE physics reach for phase-II to and contribute to running AND future detector technologies.

DUNE PHYSICS AT LOW ENERGIES

Photo-sensitive dopants can improve

Photo-sensitive dopants can enable

SOME REFERENCES

Dopants in the context of:

enabling neutrino-less double-beta decay

Xenon-Doped Liquid Argon TPCs as a Neutrinoless Double Beta Decay Platform

A. Mastbaum, F. Psihas, and J. Zennamo Rutgers University, Piscataway, NJ, 08854, USA Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA (Dated: March 29, 2022)

Doped Liquid Argon TPCs as a Neutrinoless Double Beta Decay Platform

Jul 24, 2022, 11:40 AM

Q 20m

Q 022 (JHN)

Speaker

♣ Fernanda Psihas Olmedo (Fermi National Acce...

LArTPC R&D For DUNE & beyond

Snowmass2021 - Letter of Interest
Improving Large LArTPC Performance
Through the Use of Photo-Ionizing Dopants

Topical Group(s):

(NF10) Neutrino detectors

(IF08) Noble Elements

Authors: J. Zennamo, A. Mastbaum, F. Psihas

SOME REFERENCES

Dopants in the context of:

enabling neutrino-less double-beta decay

Xenon-Doped Liquid Argon TPCs as a Neutrinoless Double Beta Decay Platform

A. Mastbaum, ¹ F. Psihas, ² and J. Zennamo²

¹Rutgers University, Piscataway, NJ, 08854, USA

²Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA

(Dated: March 29, 2022)

Doped Liquid Argon TPCs as a Neutrinoless Double Beta Decay Platform

Jul 24, 2022, 11:40 AM

Q 20m

Q 022 (JHN)

Speaker

Fernanda Psihas Olmedo (Fermi National Acce...

SIGNALS IN LARTPCS

SCINTILLATION LIGHT

Directional

Very slow

Information about trajectory and energy

Isotropic

Very fast

Information about timing and

*technically also energy

- Collected very efficiently

Collected with less efficiency

MATTERS A LOT LOW ENERGIES

WHY PHOTO-SENSITIVE DOPANTS?

Charge + Light = Constant

On DUNE, we'll expect ~50/50 charge to light breakdown.

This ratio is sufficient for the needs of GeV physics but will impact our ability to do physics at the MeV scale

JINST 15 (2020) P12004ProtoDUNE-SP

CHARGE + LIGHT = BETTER RESOLUTION AT LOW ENERGIES

EXO-200, a LXeTPC searching for 0vββ, explored the anti-correlation between light and charge signals

Found when using light or change they were only able to achieve a 4% energy resolution

By combining light and charge they were able to improve their energy resolution by 3x, to ~1%

To achieve this they collected 30,000 γ/MeV

*See J. Zennamo's talk on Saturday for this concept in LAr simulation.

HOW MUCH LIGHT DO WE NEED?

NEST^[*] models the microphysics of energy deposits in noble liquids and gases.

Explored the energy resolution for 1 MeV electrons in LAr for detectors with various efficiency and noise conditions

Achieving the best possible energy resolution need to collect at least 6000 photons per MeV

[*] Noble Elements Simulation Technique, http://nest.physics.ucdavis.edu/

Traditionally light collected at anode plane

DUNE FD Module 5,600 cm by 1,200 cm

Increasing light collection on large LArTPCs is a challenge:

- Scintillation photons have to travel large distances.
- Low photon detection coverage by design.

The best light collection efficiency has been accomplished on SBND

Best LArTPC

Light collection < 160 photons/MeV << 6000 photons/MeV

Journal of Physics: Conf. Series 888 (2017) 012094

PHOTOSENSITIVE DOPANT CONCEPT

What we know:

Good indications that this is a promising avenue of R&D

R&D Questions

Lot's of productive and impactful R&D for the coming years.

EXISTING LITERATURE

The most commonly used have ionization energies of 7-9 eV: Tetramethylgermane (**TMG**), (CH₃)₄Ge, Trimethylamine (**TMA**), N(CH₃)₃, Triethylamine (**TEA**), N(CH₂CH₃)₃

Small test stands explored a variety of chemicals and found an increase in charge for highly scintillating particles.

ENERGY RESOLUTION

ICARUS doped a 3-ton prototype LArTPC with TMG to the few ppm level

TMG was selected because it didn't react with their filter material and was easily purified

After introducing TMG observed:

30% increase in muon charge signals

Stable operation for 250 days

Found a more linear detector response for highly ionizing particles

Nucl. Instrum. Methods. Phys. Res. B 355, 660 (1995).

ICARUS Collaboration

R&D QUESTIONS

Extend demonstrations of dopant effects at energies below 5 MeV

Demonstrations of feasibility at DUNE-scale

Searches for & design of **optimal doping scenarios** for desired light-to-charge ratios

Studies of the interaction of dopants with:

- other dopants (i.e. Xe)
- filtration systems
- fluid dynamics in the cryostat

What is the impact on the **DUNE core physics**?

- Timing in a light-less DUNE
- Enhancement of low energy components of GeV events
- Improvements to other low energy signal sensitivities

THOUGHT-PROVOKING IDEAS FOR DUNE PHASE-II

A DUNE MoO with no light and ~1% energy resolution at 1 MeV.

DUNE phase-II data runs with interchangeable doping strategies.

Interdisciplinary design of ideal dopants for the optimal light/charge yields.

Photo-sensitive dopant R&D could change how we think of low energy physics with LArTPCs

Your low-energy analysis idea enabled by the ability to alter LArTPC light-to-charge ratio