

UNCOVERING NEW-PHYSICS SIGNALS IN NUCLEONS AND NUCLEI WITH LATTICE OCD

LATTICE QCD TOUCHES ON ALMOST ALL AREAS OF HEP

Parton distribution functions

Hadronic contributions to muon g-2

Dedicated parallel session on LGT for HEP on Thursday morning 10:15-12:00.

See A. Kronfeld's talk on lattice QCD for precision flavor physics.

This talk concerns lattice QCD at the nucleon and nuclear frontiers and more exploratory directions.

Neutrino-nucleus cross sections

GRAND PICTURE OF NEW PHYSICS DISCOVERY IN NUCLEON AND NUCLEI: EXAMPLE OF $0 \nu \beta \beta$ decay

$\Lambda \sim 2 \mathrm{GeV}$
$\Lambda<\mathrm{GeV}$
$\Lambda<\mathrm{MeV}$

Start with your favorite high-scale model, e.g.:

Run it down to the scale where the high-scale physics can be integrated out:

Run it down to perturbative quark-level matrix elements:

Run it down to the hadronic scale:

Use nuclear many-body calculation to match it to nuclear matrix elements:

Lattice QCD

MORE DETAILS ON THE ROADMAP FROM QCD TO NUCLEAR OBSERVABLES FOR HEP

UNCOVERING NEW-PHYSICS SIGNALS IN NUCLEONS AND NUCLEI

Physics	Target Quantity	Experiments
CP Violation and Neutrino Phenomenology	Neutrino-nucleus Scattering Cross Sections	DUNE, other Long-baseline Neutrino Experiments
Baryon Number Violation and Grand Unified Theories	Proton Decay Matrix Elements	DUNE, Hyper-Kamiokande
Baryon Number minus Lepton Number Violation	Neutron-antineutron Matrix Elements	Super-K, DUNE and other
reactors		

UNCOVERING NEW-PHYSICS SIGNALS IN NUCLEONS AND NUCLEI

At DUNE, one needs to constrain nuclear response to incoming neutrino of various energy. How can lattice QCD help?

Transition amplitudes including multi-particle and resonant final states

Forward form factors, radii

Off-forward form factors

Parton distribution functions, hadron tensor

Need to compute various matrix elements in nucleon, multi-hadron states, and (light) nuclei:

$$
\langle f| J_{\nu}|i\rangle, \quad\langle f| J_{\mu}^{\dagger} J_{\nu}|i\rangle, \quad\langle f| \mathcal{O}|i\rangle
$$

and resort to EFTs to connect to large isotopes in experiments.

Kronfeld et al (USQCD), Eur. Phys. J. A 55 (2019) 11, 196.

Ruso et al,
arXiv:2203.09030 [hep-ph].

Example: Axial charge and form factors of the nucleon from lattice QCD

$$
\begin{array}{r}
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \bar{\psi}(x) \gamma_{\mu} \gamma_{5} \psi(x)|N(p, s)\rangle=i\left(\frac{m_{N}^{2}}{E_{N}\left(\mathbf{p}^{\prime}\right) E_{N}(\mathbf{p})}\right)^{1 / 2} \bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[G_{A}\left(q^{2}\right) \gamma_{\mu} \gamma_{5}+\frac{q_{\mu} \gamma_{5}}{2 m_{N}} G_{p}\left(q^{2}\right)\right] u_{N}(p, s) \\
\text { Axial-vector current } \quad \text { Nucleon spinor } \\
\text { Axial and pseudo scalar form factors } \\
G_{A}(0)=g_{A}
\end{array}
$$

Disconnected contribution (vanishes at isospin limit for isovector quantities)

Example: Axial charge and form factors of the nucleon from lattice QCD

[^0]For the status and future of parton distribution functions from lattice QCD, see: Constantinou et al, arXiv:
2202.07193 [hep-lat].

UNCOVERING NEW-PHYSICS SIGNALS IN NUCLEONS AND NUCLEI

Physics	Target Quantity	Experiments
CP Violation and Neutrino Phenomenology	Neutrino-nucleus Scattering Cross Sections	DUNE, other Long-baseline Neutrino Experiments
Baryon Number Violation and Grand Unified Theories	Proton Decay Matrix Elements	DUNE, Hyper-Kamiokande
Baryon Number minus Lepton Number Violation	Neutron-antineutron Matrix Elements	ILL, ESS Super-K, DUNE and other reactors
Lepton Flavor Violation	Nucleon and Nuclei Form Factors	Mu2e, COMET
Lepton Number Violation	Ov $\beta \beta$ Matrix Elements	EXO, Tonne-scale $0 v \beta \beta$
CP Violation and Baryon Asymmetry in Universe	Electric Dipole Moment	$\mathrm{Hg}, \mathrm{Ra}, \mathrm{n}$ EDM at SNS and LANL
Dark Matter and New Physics Searches	Nucleon and Nuclei Form Factors	Dark Matter Experiments, Precision Measurements

MOTIVATION AND TARGET OBSERVABLES

- Tonne-scale experiment planned in the U.S., design and interpretation of the results requires nuclear matrix elements in various scenarios.
- LNV from dimension-5 operator (light Majorana neutrino exchange)
- LNV from dimension-9 operators ("shortdistance" mechanisms). Requires matrix elements of 4-quark charge-changing operators

$$
\left\langle\pi^{+}\right| O_{i}\left|\pi^{-}\right\rangle,\left\langle p \pi^{+}\right| O_{i}|n\rangle,\langle p p| O_{i}|n n\rangle
$$

$$
\begin{gathered}
\left\langle\pi^{+}\right| S_{N L}\left|\pi^{-}\right\rangle,\left\langle p \pi^{+}\right| S_{N L}|n\rangle,\langle p p| S_{N L}|n n\rangle \\
S_{N L}=\int d x d y S_{0}(x-y) T\left(J_{\alpha}^{+}(x) J_{\beta}^{+}(y)\right) g^{\alpha \beta}
\end{gathered}
$$

$2 v \beta \beta$ DECAY OF TWO NEUTRONS

$$
n n \rightarrow p p e e \bar{\nu}_{e} \bar{\nu}_{e}
$$

NPLQCD collaboration, Phys. Rev. Lett. 119, 062003 (2017), Phys. Rev. D 96, 054505 (2017).
See also Feng et al, Phys. Rev. Lett. 122, 022001 (2019), and Detmold et al, arXiv:1811.05554 [hep-lat] for the $0 \nu \beta \beta$ decay of the pion.

TO BE ACCOMPLISHED OVER THE NEXT DECADE AND BEYOND

UNCOVERING NEW-PHYSICS SIGNALS IN NUCLEONS AND NUCLEI

Physics Target Quantity Experiments

CP Violation and Neutrino Phenomenology	Neutrino-nucleus Scattering Cross Sections	DUNE, other Long-baseline Neutrino Experiments
Baryon Number Violation and Grand Unified Theories	Proton Decay Matrix Elements	DUNE, Hyper-Kamiokande
Baryon Number minus Lepton Number Violation	Neutron-antineutron Matrix Elements	ILL, ESS Super-K, DUNE and other reactors
Lepton Flavor Violation	Nucleon and Nuclei Form Factors	Mu2e, COMET
Lepton Number Violation	$0 v \beta \beta$ Matrix Elements	EXO, Tonne-scale $0 v \beta \beta$
CP Violation and Baryon Asymmetry in Universe	Electric Dipole Moment	Hg, Ra, n EDM at SNS and LANL
Dark Matter and New Physics Searches	Nucleon and Nuclei Form Factors	Dark Matter Experiments, Precision Measurements

MOTIVATION AND TARGET OBSERVABLES

Standard Model input is necessary to interpret the results of DM searches and translate these into limits on DM models.

- The low-energy limit of a generic spinindependent interaction is scalar coupling to any quark flavor.
- Lattice OCD is the key tool to obtain the strange contributions.
- Spin-dependent couplings and other interactions require knowledge of parton structure of nuclei.

$$
\sigma_{\pi N}=\frac{1}{2}\left(m_{u}+m_{d}\right)\langle N| \bar{u} u+\bar{d} d|N\rangle
$$

$$
\sigma_{s}=m_{s}\langle N| \bar{s} s|N\rangle
$$

Aoki et al (Flavor Lattice Averaging Group), FLAG Review (2021).

TO BE ACCOMPLISHED OVER THE NEXT DECADE AND BEYOND

UNCOVERING NEW-PHYSICS SIGNALS IN NUCLEONS AND NUCLEI

Physics	Target Quantity	Experiments
CP Violation and Neutrino Phenomenology	Neutrino-nucleus Scattering Cross Sections	DUNE, other Long-baseline Neutrino Experiments
Baryon Number Violation and Grand Unified Theories	Proton Decay Matrix Elements	DUNE, Hyper-Kamiokande
Baryon Number minus Lepton Number Violation	Neutron-antineutron Matrix Elements	ILL, ESS Super-K, DUNE and other reactors
Lepton Flavor Violation	Nucleon and Nuclei Form Factors	Mu2e, COMET
Lepton Number Violation	Ov $\beta \beta$ Matrix Elements	EXO, Tonne-scale Ovß
CP Violation and Baryon Asymmetry in Universe	Electric Dipole Moment	Hg, Ra, n EDM at SNS and LANL
Dark Matter and New Physics Searches	Nucleon and Nuclei Form Factors	Dark Matter Experiments, Precision Measurements

> MOTIVATION AND TARGET OBSERVABLES

Reliable matrix elements will help establish pattern of LFV signatures in various decay channels depending on the underlying mechanism.

UNCOVERING NEW-PHYSICS SIGNALS IN NUCLEONS AND NUCLEI

Physics	Target Quantity	Experiments
CP Violation and Neutrino Phenomenology	Neutrino-nucleus Scattering Cross Sections	DUNE, other Long-baseline Neutrino Experiments
Baryon Number Violation and Grand Unified Theories	Proton Decay Matrix Elements	DUNE, Hyper-Kamiokande
Baryon Number minus Lepton Number Violation	Neutron-antineutron Matrix Elements	ILL, ESS Super-K, DUNE and other reactors
Lepton Flavor Violation	Nucleon and Nuclei Form Factors	Mu2e, COMET
Lepton Number Violation	$0 v \beta \beta$ Matrix Elements	EXO, Tonne-scale $0 v \beta \beta$
CP Violation and Baryon Asymmetry in Universe	Electric Dipole Moment	Hg, Ra, n EDM at SNS and LANL
Dark Matter and New Physics Searches	Nucleon and Nuclei Form Factors	Dark Matter Experiments, Precision Measurements

MOTIVATION AND TARGET OBSERVABLES

- GUT and SUSY-GUT constraints require $p \rightarrow$ meson matrix elements. Some models predict suppression of p decay matrix elements due to nonperturbative dynamics.
- Upcoming DUNE will examine $p \rightarrow K l \nu$ and $p \rightarrow \pi \pi e^{+}$

$$
\begin{aligned}
& \left\langle\pi^{0}\right| \epsilon_{i j k}\left(u^{i T} C P_{R, L} d^{j}\right) P_{L} u^{k}|p\rangle \\
& \left\langle\pi^{+}\right| \epsilon_{i j k}\left(u^{i T} C P_{R, L} d^{j}\right) P_{L} d^{k}|p\rangle
\end{aligned}
$$

decays with better precision, future hyper-K will further improve p-decay constraints.

Form factors parametrizing the shown normalized matrix elements at given values of momentum transfer:

UNCOVERING NEW-PHYSICS SIGNALS IN NUCLEONS AND NUCLEI

Physics	Target Quantity	Experiments
CP Violation and Neutrino Phenomenology	Neutrino-nucleus Scattering Cross Sections	DUNE, other Long-baseline Neutrino Experiments
Baryon Number Violation and Grand Unified Theories	Proton Decay Matrix Elements	DUNE, Hyper-Kamiokande
Baryon Number minus Lepton Number Violation	Neutron-antineutron Matrix Elements	ILL, ESS Super-K, DUNE and other reactors
Lepton Flavor Violatior	Nucleon and Nuclei Form Factors	Mu2e, COMET
Lepton Number Violation	Ov $\beta \beta$ Matrix Elements	EXO, Tonne-scale 0v $\beta \beta$
CP Violation and Baryon Asymmetry in Universe	Electric Dipole Moment	Hg, Ra, n EDM at SNS and LANL
Dark Matter and New Physics Searches	Nucleon and Nuclei Form Factors	Dark Matter Experiments, Precision Measurements

MOTIVATION AND TARGET OBSERVABLES

Some models of B-L violation do not allow the proton decay, therefore, neutron-antineutron oscillation bounds can provide powerful constraints.

- Two types of experiments: slow neutron beams and oscillation in nuclear medium with a distinct 5-pion final state.
- Theoretical uncertainties in neutron beam expts easier to control. Bounds could be improved by a factor of 1000 in next experiments.
- Lattice OCD evaluates matrix elements of 6-quark operators that convert a neutron to an antineutron.

$$
\frac{1}{\tau_{n \bar{n}}}=\delta m=c_{B S M}\left(\mu_{B S M}, \mu_{W}\right) c_{Q C D}\left(\mu_{W}, \Lambda_{Q C D}\right)\langle\bar{n}| \mathscr{O}|n\rangle
$$

CURRENT STATUS

Normalized six-quark operators matrix elements obtained from lattice OCD at the physical point:

Operator	$\mathcal{M}_{I}^{\overline{\mathrm{MS}}}$ $(2 \mathrm{GeV})$	$\mathcal{M}_{I}^{\overline{\mathrm{MS}}}$ $(700 \mathrm{TeV})$	$\mathcal{M}_{I}^{\overline{\mathrm{MS}}}$ MIT bag A $(2 \mathrm{GeV})$	$\mathcal{M}_{I}^{\overline{\mathrm{MS}}}$ MIT bag B $(2 \mathrm{GeV})$
Q_{1}	$-46(13)$	$-26(7)$	4.2	5.2
Q_{2}	$95(17)$	$144(26)$	7.5	8.7
Q_{3}	$-50(12)$	$-47(11)$	5.1	6.1
Q_{5}	$-1.06(48)$	$-0.23(10)$	-0.8	1.6

Rinaldi et al., Phys. Rev. Lett. 122, 162001 (2019).

TO BE ACCOMPLISHED OVER THE NEXT DECADE AND BEYOND

UNCOVERING NEW-PHYSICS SIGNALS IN NUCLEONS AND NUCLEI

Physics	Target Quantity	Experiments
CP Violation and Neutrino Phenomenology	Neutrino-nucleus Scattering Cross Sections	DUNE, other Long-baseline Neutrino Experiments
Baryon Number Violation and Grand Unified Theories	Proton Decay Matrix Elements	DUNE, Hyper-Kamiokande
Baryon Number minus Lepton Number Violation	Neutron-antineutron Matrix Elements	ILL, ESS Super-K, DUNE and other reactors
Lepton Flavor Violation	Nucleon and Nuclei Form Factors	Mu2e, COMET
Lepton Number Violation	$0 v \beta \beta$ Matrix Elements	EXO, Tonne-scale $0 v \beta \beta$
CP Violation and Baryon Asymmetry in Universe	Electric Dipole Moment	Hg, Ra, n EDM at SNS and LANL
Dark Matter and New Physics Searches	Nucleon and Nuclei Form Factors	Dark Matter Experiments, Precision Measurements

MOTIVATION AND TARGET OBSERVABLES

- Permanent EDM of protons, neutrons and nuclei would be the best evidence for CP violation beyond the SM.

Several neutron EDM experiments are planned (SNS and LANL in the U.S.), improving the limits by 2 orders of magnitude.

MOTIVATION AND TARGET OBSERVABLES

- Constraining BSM requires combining different non-zero EDM results and matching between nuclear-level EDM and quark/gluon effective CP violating operators.
- Quark EDM and tensor charges essentially done, more on isoscalar and strange/charm to be done. the rest of EDM contributions yet unconstrained.

$$
\mathcal{L}_{6}^{C P V}=-\frac{i}{2} \sum_{f=e, u, d, s} d_{f} \bar{f} \sigma \cdot F \gamma_{5} f-\frac{i}{2} \sum_{q=u, d, s} \tilde{d}_{q} g_{s} \bar{q} \sigma \cdot G \gamma_{5} q+d_{W} \frac{g_{s}}{6} G \tilde{G} G+\sum_{i} C_{i}^{(4 f)} O_{i}^{(4 f)}
$$

> TO BE ACCOMPLISHED OVER THE NEXT DECADE AND BEYOND

EXPECTATIONS FOR THE NEXT DECADE

Category	Milestone	Target precision	Experiment(s)
Nucleon	Nucleon g_{A}^{u-d}	$1 \%^{*}$	Neutron lifetime puzzle
matrix	Nucleon g_{T}^{u-d}	1%	UCNB, Nab
elements	Nucleon g_{S}^{u-d}	3%	UCNB, Nab
	$\sigma_{\pi N}, \sigma_{s}$	5%	Mu2e, LZ, CDMS
	Nucleon r_{E}, r_{A}	5%	DUNE, MicroBooNE, NOvA, T2K
	Nucleon $F_{A}\left(q^{2}\right)$	8%	DUNE, MicroBooNE, NOvA, T2K
	Nucleon tensor	20%	DUNE, MicroBooNE, NOvA, T2K
	Nucleon PDFs	$12 \%^{*}$	ATLAS, CMS, DUNE, EIC expts
	Proton decay	10%	DUNE, HyperK
	$n n \rightarrow p p$	$50 \%^{*}$	EXO, other 0 $\beta \beta \beta$ experiments
	Nucleon EDM	$10 \%^{*}$	Neutron, proton EDM experiments
	$g_{A, T, S}, 1<A \leq 4$	$20 \%^{*}$	All neutrino, DM, EDM, ...
Single-nucleon		Kronfeld at al, usocd snowmass whitepaper (2022).	
Multi-nucleon			

EXPECTATIONS FOR THE NEXT DECADE

Category	Milestone	Target precision	Experiment(s)
Nucleon matrix elements	Nucleon g_{A}^{u-d}	1\%*	Neutron lifetime puzzle
	Nucleon g_{T}^{u-d}	1\%	UCNB, Nab
	Nucleon g_{S}^{u-d}	3%	UCNB, Nab
	$\sigma_{\pi N}, \sigma_{s}$	5\%	Mu2e, LZ, CDMS
	Nucleon r_{E}, r_{A}	5\%	DUNE, MicroBooNE, NOvA, T2K
	Nucleon $F_{A}\left(q^{2}\right)$	8\%	DUNE, MicroBooNE, NOvA, T2K
	Nucleon tensor	20\%	DUNE, MicroBooNE, NOvA, T2K
	Nucleon PDFs	12\%*	ATLAS, CMS, DUNE, EIC expts
	Proton decay	10\%	DUNE, HyperK
	$n n \rightarrow p p$	50\%*	EXO, other $0 \nu \beta \beta$ experiments
Single-nucleon Multi-nucleon	Nucleon EDM	10\%*	Neutron, proton EDM experiments
	$g_{A, T, S}, 1<A \leq 4$	20\%*	All neutrino, DM, EDM, ...
		Kronfeld	al, USQCD Snowmass whitepaper (2022)

Need more resource assessments and sensitivity analysis using synthetic data for nuclear matrix elements.

Three features make lattice QCD calculations of nuclei hard:
i) The complexity of systems grows rapidly with the number of quarks.

```
Detmold and Orginos, Phys. Rev.
D 87, 114512 (2013).
```

```
See also: Detmold and Savage,
Phys.Rev.D82 014511 (2010).
Doi and Endres, Comput. Phys.
Commun. 184 (2013) 117.
```

ii) Excitation energies of nuclei are much smaller than the QCD scale.

```
Beane at al (NPLQCD), Phys.Rev.D79 114502 (2009).
Beane, Detmold, Orginos, Savage, Prog. Part. Nucl. Phys. 66 (2011).
Junnakar and Walker-Loud, Phys.Rev. D87 (2013) 114510.
Briceno, Dudek and Young, Rev. Mod. Phys. 90 025001.
```

iii) There is a severe signal-to-noise degradation.

```
Paris (1984) and Lepage (1989). Wagman and Savage, Phys. Rev. D 96, 114508 (2017).
Wagman and Savage, arXiv:1704.07356 [hep-lat].
```

i) The complexity of systems grows rapidly with the number of quarks.

Complexities of quark-level interpolating fields

Complexities of quark contractions

A quark-level nuclear interpolating field:

$$
\overline{\mathcal{N}}^{h}=\sum_{\mathbf{a}} w_{h}^{a_{1}, a_{2} \cdots a_{n_{q}}} \bar{q}\left(a_{1}\right) \bar{q}\left(a_{2}\right) \cdots \bar{q}\left(a_{n_{q}}\right)
$$

which naively has $\frac{N!}{n_{q}!\left(N-n_{q}\right)!}$ terms! But many of the terms are zero by symmetries.
Example: deuteron at a single site

$$
924 \quad \rightarrow \quad 21
$$

All possibilities for quark quantum numbers in the interpolating operator

Complexities of quark-level interpolating fields

Naively the number of quark contractions for a nucleus goes as:

How bad is this?

Example: Consider radium-226 isotope.
The number of contractions required is $\sim 10^{1425}$

Complexities of quark contractions

An example of a more efficient algorithm:
The new scaling is: $\quad M_{w} \cdot N_{w} \cdot \frac{(3 A)!}{(3!)^{A}}$
BARYON BLOCKS

Number of terms in the sink

Number of terms in the source
${ }^{16} \mathrm{O}$ (SS)

Complexities of quark contractions
ii) Excitation energies of nuclei are much smaller than the QCD scale.

Getting radium directly from OCD will remain challenging for a long time! One should first compute $A=2,3,4$ systems well. This is till not that easy: $B_{d} \approx 2 \mathrm{MeV}$!

The small excitation gaps require more sophisticated techniques to discern the spectrum, such as variational approaches with a large and diverse operator set. Example: Deuteron channel at $m_{\pi} \approx 800 \mathrm{MeV}$.

A symmetric correlation function of many types of operators at source and sink...

which gives access to low-energy scattering phase shifts.

leads to identification of upper bounds on finite-volume eigenenergies...

iii) There is a severe signal-to-noise degradation.

The ground-state of the variance correlator is three pions and not two nucleons:

$$
\operatorname{StN}\left(C_{i}\right) \sim \frac{\left\langle C_{i}\right\rangle}{\sqrt{\left.\left.\langle | C_{i}\right|^{2}\right\rangle}} \sim e^{-\left(M_{N}-\frac{3}{2} m_{\pi}\right) t} .
$$

```
Parisi (1984) and Lepage (1989).
```

Wagman and Savage $(2016,2017)$.

Similar arguments explain why boosted hadron correlation functions are noisy too.

Ideas to combat signal-to-noise problem include:

i) Enhancing the signal by operator-overlap optimizations (heuristically or systematically)

Endres and Detmold (2014).

ii) A phase reweighting method to allow extrapolations by systematically changing the noise contribution

Savage and Wagman (2016-2017).

iii) Exploiting decorrelation between spacetime subvolumes (multilevel integrals and domain decomposition) ce, Giusti and schaefer (2016-2018).

iv) Path integral contour deformations for observables

```
Detmold, Kanwar, Lamm, Wagman, Warrington (2021).
```


CAN WE COMBAT SIGNAL-TO-NOISE AND SIGN PROBLEMS IN MONTE CARLO LATTICE OCD SIMULATIONS WITH NEW COMPUTATIONAL PARADIGMS?

CAN WE COMBAT SIGNAL-TO-NOISE AND SIGN PROBLEMS IN MONTE CARLO LATTICE QCD SIMULATIONS WITH NEW COMPUTATIONAL PARADIGMS?

Full control over

Differentiability
Data hierarchies and computing models

Challenges ahead

Requirements

Acknowledging the
exploratory nature of
ML research for LFT
Developing and
maintaining dedicated software

Workforce development and retention

APPLICATIONS OF ML ON LATTICE FIELD THEORY TO DATE

i) Classifying lattice field theory phases
e.g., Wetzel et al, Phys.

Rev. B 96, 184410 (2017).

ii) Estimating observables
e.g., Yoon+ Phys. Rev. D 100, 014504 (2019).

iii) Reconstructing spectral functions

```
e.g., Kades+ Phys. Rev.
D 102, 096001 (2020).
```


iv) Gauge ensemble genenration and action parameter regression

[^1]

Німс

GAN-overrelaxation

CAN WE COMBAT SIGNAL-TO-NOISE AND SIGN PROBLEMS IN MONTE CARLO LATTICE QCD SIMULATIONS WITH NEW COMPUTATIONAL PARADIGMS?

A QUANTUM-SIMULATION-BASED LATTICE FIELD THEORY CAMPAIGN WILL BE

 MULTI PRONG AS HAS BEEN THE CASE WITH THE CONVENTIONAL PROGRAM...

How to formulate QCD in the Hamiltonian language?

What are the efficient formulations? Which bases will be most optimal toward the continuum limit?

How to preserve the symmetries? How much should we care to retain gauge invariance?

How to quantify systematics such as finite volume, discretization, boson truncation, time digitization, etc.?

What is the capability limit of the hardware for gauge-theory simulations so far?

What is the nature of noise in hardware

> Implementation, benchmark, and co-design and how can it best be mitigated?

Can we co-design dedicated systems for gauge-theory simulations?

Can digital and analog ideas be combined to facilitate simulations of field theories?

Martinez, Muschik, Schindler, Nigg, Erhard, Heyl, Hauke, Dalmonte, Monz, Zoller, Blatt, Nature 534, 516-519 (2016)

Nguyen, Tran, Zhu, Green, Huerta Alderete, ZD, Linke, PRX Quantum 3 (2022) 2, 020324.

scaled time
Klco, Dumitrescu, McCaskey, Morris, Pooser, Sanz, Solano, Lougovski, Savage, Phys. Rev. A 98, 032331 (2018)

Lu, Klco, Lukens, Morris, Bansal, Ekström, Hagen, Papenbrock, Weiner, Savage, Lougovski, Phys. Rev. A 100, 012320 (2019)

Real-time dynamic of pure $\operatorname{SU}(3)$ with global irrupts on IBM


```
Ciavarella, Klco, and Savage,
Phys. Rev. D 103, 094501 (2021).
```

Low-lying spectrum of $\mathrm{SU}(2)$ with matter in 1+1 D on IBM

Atas et al, Nature

Communications 12, 6499 (2021).
SU(3) example: Atas et al:
arXiv:2207.03473 [quant-ph].

See also studies on D-wave annealers: Rahman et al, Phys. Rev. D 104, 034501 (2021), Illa and Savage, arXiv:2202.12340 [quant-ph], Farrel et al, arXiv:2207.01731 [quant-ph].

TO SUMMARIZE:

Physics

CP Violation and Neutrino Phenomenology

Baryon Number Violation and Grand Unified Theories

Baryon Number minus Lepton Number Violation

Lepton
Flavor Violation

Lepton
Number Violation

CP Violation and Baryon
Asymmetry in Universe
Dark Matter and New Physics
Searches

Theorists supporting the research program in searches for new physics in rare processes in nucleon and nuclei include high-energy physicists building the high-scale models, QCD physicists matching high-scale models to hadronic-scale quantities, and nuclear physicists matching the hadronic quantities to nuclear-scale quantities for experiment. The synergy among these communities will be essential.

Lattice field theorists have long identified the impactful calculations in this area and are pushing the frontiers of exploratory as well as mature full-scale computations of quantities of relevance to this program.

The quantities of interest are a set of local (and bi-local) nucleon and nuclear matrix elements associated with SM or beyond the SM quark- and gluon-level currents. Few percent uncertainties in nucleon matrix elements and <50\% uncertainties in few-nucleon matrix elements are achievable goals of this program over the next decade.

To expedite the computations and combat signal-to-noise and sign problems associated with finite-density systems and/or dynamical quantities, lattice field theorists are exploring new computational paradigms such as machine learning and quantum computing.

[^0]: For the status and future of multi-hadron spectroscopy and transitions from lattice QCD, see: Bulava et al, arXiv: 2203.03230 [hep-lat].

[^1]: e.g., Shanahant Phys. Rev. D 97, 094506 (2018), Pawlowski and Urban, ML: Sci. and Tech. 1 (2020) 045011.

