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lattice QCD for precision 
flavor physics.

This talk concerns lattice QCD at 
the nucleon and nuclear frontiers 
and more exploratory directions.
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GRAND PICTURE OF NEW PHYSICS DISCOVERY IN NUCLEON AND NUCLEI: 
EXAMPLE OF  decay0νββ

⇤ > TeV

⇤ < GeV

⇤ < MeV

⇤ ⇠ 102 GeV

⇤ ⇠ 2 GeV

Start with your favorite high-scale model, e.g.:

Run it down to perturbative quark-level matrix elements:

Use nuclear many-body calculation to 
match it to nuclear matrix elements:

Run it down to the hadronic scale:

Run it down to the scale where the high-scale physics can be integrated out:
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Cirigliano, ZD et al (USQCD), Eur. Phys. J. A (2019) 55: 197.



MORE DETAILS ON THE ROADMAP FROM QCD TO NUCLEAR OBSERVABLES FOR HEP

Few-nucleon interactions 
and elastic scattering 

amplitudes

Few-nucleon 
transition amplitudes

Effective field theory of forces

Many-body nuclear structure 
and reaction calculations
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Neutron-antineutron 
oscillations in nuclei

Neutrino-nucleus 
scattering for DUNE

CP violation in nuclei 
and atoms

Muon to electron conversion 
in vicinity of nuclear media

Nature of dark matter and its 
interactions with ordinary matter

Lepton-number 
nonconservation and  decay0νββ
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Physics Target Quantity Experiments

CP Violation and Neutrino 
Phenomenology

Neutrino-nucleus Scattering 
Cross Sections

DUNE, other Long-baseline 
Neutrino Experiments

Baryon Number Violation and 
Grand Unified Theories

Proton Decay Matrix 
Elements

DUNE, Hyper-Kamiokande

Baryon Number minus 
Lepton Number Violation

Neutron-antineutron Matrix 
Elements

ILL, ESS

Super-K, DUNE and other 

reactors

Lepton  
Flavor Violation

 Nucleon and Nuclei Form 
Factors

Mu2e, COMET 

Lepton  
Number Violation

0νββ Matrix Elements EXO, Tonne-scale 0νββ

CP Violation and Baryon 
Asymmetry in Universe

Electric Dipole Moment
Hg, Ra,  n EDM at SNS and 

LANL

Dark Matter and New Physics 
Searches

Nucleon and Nuclei Form 
Factors

Dark Matter Experiments,

Precision Measurements

UNCOVERING NEW-PHYSICS SIGNALS IN NUCLEONS AND NUCLEI

Cirigliano, ZD et al (USQCD), Eur. Phys. J. A (2019) 55: 197, Kronfeld et al (USQCD), Eur. Phys. J. A 55 (2019) 11, 196.
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At DUNE, one needs to constrain nuclear response to incoming 
neutrino of various energy. How can lattice QCD help?

d2�

d! d⌦

!

N⇤�

Elastic

Quasielastic

Forward form 
factors, radii

Off-forward 
form factors

Transition amplitudes 
including multi-particle 
and resonant final states

Parton distribution 
functions, hadron tensor

v-nucleus 
scattering at a 
fixed momentum 
transfer

e↵ects are needed for scattering events that knock out two (or more) nucleons. Even in
nuclear spectroscopy, three-body potentials improve the agreement with observed nuclear
levels [18–20]. Often these calculations use phenomenological potentials, but e↵ective field
theory (EFT) o↵ers a direct connection to QCD [21–24]. Chiral EFTs are, however, limited
to a kinematic range where the momenta are small relative to the chiral symmetry breaking
scale ⇤� ⇠ 700 MeV. Even then, the reliability of the application of nuclear EFT to large
atomic number systems, such as argon, requires significant development, testing, and, even-
tually, verification. These issues are further intertwined with the constraints of how event
generators [25–29] and detector simulations are implemented. Inconsistencies arise in the
current approach where, for example, the axial form factor of the nucleon is extracted from
⌫A scattering data assuming one nuclear model and then used in event generators employing
another.

A central goal of nuclear theory in this arena should therefore be to define a path for-
ward that allows for a quantified nuclear uncertainty to be presented for experiments such
as DUNE and HyperK. Achieving this is a challenging task and will require input and con-
straints from lattice QCD in order for it to be successful. In addition to the single- and
few-nucleon amplitudes noted above, it will be valuable to compute directly the properties
of small nuclei. At present, calculations involving nuclei up to 4He are possible. In addition
to being interesting in their own right, such lattice-QCD calculations of few nucleon systems
can be used to constrain low energy constants (LECs) in the EFTs. This approach has
already been applied to static quantities, such as magnetic moments. A next step will be
to work with matrix elements of electroweak currents, to build up e↵ects associated with
two- and higher-body contributions, as well as more complex contributions such as pion
production. In combination with experimental constraints from eA scattering, and neutrino
scattering on light nuclear targets,1 it is hoped a robust uncertainty can be determined.

To study neutrino oscillations, we are interested in the processes

⌫`A ! `�X, ⌫̄`A ! `+X, (1.1)

where A denotes the nucleus and X the combination of all final-state hadrons including
the remnant of the nucleus. The charged weak current responsible for these interactions
has the well-known V � A structure. Properties of the vector current can be inferred from
electromagnetic scattering, up to isospin corrections (which are negligible for the needed
precision; see Sec. IV). On the other hand, because the weak charge of the proton is so
small, Qp

w = 0.0719 ± 0.0045 [31], at the energies of interest, only neutron-neutrino (and
proton-antineutrino) scattering is sensitive to the axial current. These circumstances o↵er
the possibility of testing lattice-QCD methodology with the vector current before relying on
it for the axial current.

The quantity needed to describe the strong-interaction side of the scattering depends
on the energy transferred. At the lowest energies, the only possibility is coherent elastic
scattering via the weak neutral current, with X = A [32, 33]. Coherent neutrino-nucleus
interactions have recently been observed for the first time [34]. As the energy increases
slightly, the excitation spectrum of A is traced out: X = A⇤. The needed quantities are
matrix elements between di↵erent nuclear levels. In lattice QCD, one would have to simulate
the whole nucleus directly, which is currently feasible only for nuclei much smaller than those
in the cesium-iodide detector of Ref. [34].

1 Indeed, recent discussions of future experiments with deuterium or hydrogen targets [30] hinge on noting

the utility of nucleon-level amplitudes in nuclear many-body theory.

6

Kronfeld et al (USQCD), Eur. 
Phys. J. A 55 (2019) 11, 196.

Shallow and deep inelastic
Shallow and deep inelastic

Need to compute various matrix elements in nucleon, multi-hadron 
states, and (light) nuclei:


and resort to EFTs to connect to large isotopes in experiments.

ideal way to compute them in the so-called shallow-inelastic region with energy above the
resonance region but insu�cient for the OPE; see Sec. III.

In summary, then, the goals for lattice QCD for neutrino oscillation physics are to calcu-
late matrix elements of the form

hf |J⌫ |ii, hf |J†
µJ⌫ |ii, hf |O|ii, (1.3)

where the initial and final states are single nucleons, two nucleons, nucleons with a pion
(including resonances), or small nuclei. In the last case, O denotes an operator appearing in
the OPE, or a bilocal, spatially-separated operator arising in the calculation of PDFs. The
lattice-QCD calculations of these and related matrix elements have a long history, motivated
principally by the desire to understand nucleon and nuclear structure. For a broad survey,
see our companion whitepaper “Hadrons and Nuclei” [4].

Recall that lattice QCD calculates hadronic correlation functions, which contain in-
formation about the masses and matrix elements of interest; the information is extracted
by fitting the behavior of the correlation functions in (Euclidean) time. Several technical
di�culties make baryon calculations more di�cult than the corresponding calculations for
mesons. First, statistical errors on baryon correlation functions are larger and more poorly
behaved in time [41–43]. Second, it has proven more di�cult, in practice, to disentangle
matrix elements of the ground-state baryons from that of their excitations [44]. Last, the
dependence of baryon properties on the light quark mass (used in the simulation) is less
well described by the low-energy EFT of pions and baryons. All these di�culties can be
addressed with more computing. The signal-to-noise problem can clearly be attacked with
higher statistics. It can also be mitigated by choosing more sophisticated operators to create
and annihilate baryon states; this method is also the way to better filter out the excited
states. Finally, more computing also enables simulations with lighter and even physical
quark masses [39, 40, 45].

The rest of this whitepaper is organized as follows. In Sec. II, we discuss calculations
that are relatively straightforward. These include nucleon form factors, which are needed
to describe quasielastic scattering, and moments of PDFs, which are needed in the deep-
inelastic region. We discuss the form factors in considerable detail, because the time to
incorporate these results into event generators is soon or, arguably, now. In particular,
having the correct slopes for the form factors is crucial to gaining quantitative control of the
cross section. More challenging calculations are covered in Sec. III. This class of problems is
large and varied: transitions to resonances and multibody states, calculations for shallow-
and deep-inelastic scattering, and the vector and axial matrix elements of small nuclei.
Section IV turns to calculations that are far enough beyond that state of the art that new
ideas or computing facilities greater than exascale are needed. Foreseeable computing needs
are covered in Sec. V, noting the separate needs for both capability and capacity computing.

II. STRAIGHTFORWARD CALCULATIONS

The most straightforward matrix elements to calculate are those with one stable hadron
in the initial state, and one or none in the final state. Here we focus on the matrix elements
of electroweak currents, hN |Jµ|Ni, which directly enter neutrino-nucleon scattering, and
matrix elements of local operators, hN |O|Ni, where O appears in the operator-product
expansion of two J currents, which arise in the analysis of deep-inelastic scattering.

8
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fraction, as well as the nucleon spin, including disconnected contributions. The systematic un-
certainties are investigated and where possible we compare with experimental / phenomenological
data. Recent results on Generalized Form Factors for other baryons and mesons are also presented,
as well as, perspectives and future directions.

2. Nucleon Sector
Although the nucleon is the only stable hadron in the Standard Model, its structure is not fully

understood. Being one of the building-blocks in the universe, the nucleon provides an extremely
valuable laboratory for studying strong dynamics providing important input that can also shed
light in new Physics searches. There have been numerous recent lattice QCD results on nucleon
observables. Here, we discuss selected achievements, as well as, challenges involved in these
computations.

In a nutshell, in the evaluation of nucleon matrix elements in lattice QCD there are two type
of diagrams entering shown in Fig. 1. The disconnected diagram has been neglected in most of the
studies because it is very noisy and expensive to compute. During the last few years a number of
groups are studying various techniques for its computation and first results already appear in the
literature [7 – 10].

q = p p

(x , t)
(x i , ti)(x f , tf )

O Γ

q = p ′ − p

(x , t)
(x i , ti)(x f , tf )

O Γ

Figure 1: Connected (left) and disconnected (right) contributions to the nucleon three-point function.

In the computation of nucleon matrix elements one needs appropriate two- and three-point
correlation functions defined as:

G2pt(!q, t f ) = ∑
!x f
e−i!x f ·!qΓ0βα 〈Jα(!x f , t f )Jβ (0)〉 , (2.1)

G3pt
O

(Γµ ,!q, t f ) = ∑
!x f ,!x

ei!x·!q e−i!x f ·!p
′
Γµβα 〈Jα(!x f , t f )O(!x, t)Jβ (0)〉 . (2.2)

The projectors Γµ are defined as Γ0 ≡ 1
4(1+ γ0), Γk ≡ Γ0 · γ5 · γk . Other Γ-variations can be em-

ployed, in order to compute the quantities of interest. The lattice data are extracted from dimen-
sionless ratio of the two- and three-point correlation functions:

RO(Γ,!q, t, t f )=
G3pt

O
(Γ,!q, t)

G2pt(!0, t f )
×

√

G2pt(−!q, t f−t)G2pt(!0, t)G2pt(!0, t f )
G2pt(!0, t f−t)G2pt(−!q, t)G2pt(−!q, t f )

→
t f−t→∞
t−ti→∞

Π(Γ,!q) . (2.3)

The above ratio is considered optimized since it does not contain potentially noisy two-point func-
tions at large separations and because correlations between its different factors reduce the statistical
noise. The most common method to extract the desired matrix element is to look for a plateau with
respect to the current insertion time, t (or, alternatively, the sink time, t f ), which should be located
at a time well separated from the creation and annihilation times in order to ensure single state
dominance. To establish proper connection to experiments we apply renormalization which, for
the quantities discussed in this review, is multiplicative:
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ΠR(Γ,!q) = ZOΠ(Γ,!q) . (2.4)

Finally, the nucleon matrix elements can be parameterized in terms of Generalized Form Fac-
tors (GFFs). As an example we take the axial current insertion which decomposes into two Lorentz
invariant Form Factors (FFs), the axial (GA) and pseudoscalar (Gp):

〈N(p′,s′)|ψ̄(x)γµ γ5ψ(x)|N(p,s)〉= i

(

m2
N

EN(p′)EN(p)

)1/2

ūN(p′,s′)

[

GA(q2)γµγ5+
qµγ5

2mN
Gp(q2)

]

uN(p,s) ,

(2.5)
where q2 is the momentum transfer in Minkowski space (hereafter, Q2 =−q2).

In these proceedings I will mostly consider the flavor isovector combination for which the
disconnected contribution cancels out; strictly speaking, this happens for actions with exact isospin
symmetry. Another advantage of the isovector combination is that the renormalization simplifies
considerably.

2.1 Nucleon Axial Charge

One of the fundamental nucleon observables is the axial charge, gA ≡ GA(0), which is deter-
mined from the forward matrix element of the axial current. gqA gives the intrinsic quark spin in the
nucleon. It governs the rate of β -decay and has been measured precisely. In the lattice QCD it can
be determined directly from the evaluation of the matrix element and thus, there is no ambiguity
asocciated to fits. For this reasons, gA is an optimal benchmark quantity for hadron structure com-
putations. It is thus essential for lattice QCD to reproduce its experimental value or if a deviation
is observed to understand its origin.
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Figure 2: Collection of lattice results for gA. In chronological order these correspond to: Nf=2+1 DWF
(RBC/UKQCD [11, 12], RBC/UKQCD [13], χQCD [14]), Nf=2+1 DWF on asqtad sea (LHPC [15]),
Nf=2 TMF (ETMC [16]), Nf=2 Clover (QCDSF/UKQCD [17], CLS/MAINZ [18], QCDSF [19],
RQCD [20, 21]), Nf=1+2 Clover (LHPC [22], CSSM [23]), Nf=2+1+1 TMF (ETMC [24]), Nf=2+1+1
HISQ (PNDME [25, 26]), Nf=2 TMF with Clover (ETMC [27]). The asterisk is the experimental value.

4

Nucleon spinorAxial-vector current Axial and pseudo scalar form factors

GA(0) = gA

Connected contribution
Disconnected contribution (vanishes at isospin limit 

for isovector quantities)      

Constantinou, arXiv:1411.0078 [hep-lat].

Example: Axial charge and form factors 
of the nucleon from lattice QCD
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Error From gu�d

A
gu�d

S
gu�d

T

SESC 0.02 * 0.03 * 0.01 +

Z 0.01 + 0.04 * 0.03 +

a 0.02 + 0.04 * 0.01 +

Chiral 0.01 * 0.01 + 0.02 +

Finite volume 0.01 * 0.01 * 0.01 *

Guesstimate error 0.033 0.066 0.04
Error quoted 0.025 0.080 0.032
Fit ansatz 0.03 0.06 0.01

TABLE IX. Estimates of the error budget for the three isovec-
tor charges due to each of the five systematic e↵ects described
in the text. The symbols * and + indicate the direction in
which a given systematic is observed to drive the central value
obtained from the 11-point fit. The sixth row gives a guessti-
mate of error obtained by combining these five systematics
in quadrature. This guesstimate is consistent with the actual
errors obtained from the 11-point fit and quoted in Eq. 13
and reproduced in the seventh row. The last row gives the
additional systematic error assigned to account for possible
uncertainty due to the using the CCFV fit ansatz with just
the lowest order correction terms as described in the text.

MN �MP Nf {md,mu}
QCD

(MeV) Flavors (MeV)

2.58(32) 2+1 md = 4.68(14)(7),mu = 2.16(9)(7) [50]

2.73(44) 2+1+1 md = 5.03(26),mu = 2.36(24) [50]

2.41(27) 2+1 md �mu = 2.41(6)(4)(9) [51]

2.63(27) 2+1+1 md = 4.690(54),mu = 2.118(38) [52]

TABLE X. Results for the mass di↵erence (MN � MP )
QCD

obtained using the CVC relation with our estimate gu�d

S
=

1.022(80)(60) and lattice results for the up and down quark
masses from the FLAG review [50] and recent results [51, 52].

Figs. 5, 6 and 7. They show the steady improvement in
results from lattice QCD. In this section we compare our
results with two calculations published after the analy-
sis and the comparison presented in Ref. [3], and that
include data from physical pion mass ensembles. These
are the ETMC [36, 37, 53] and CalLat results [47].

The ETMC results gu�d

A
= 1.212(40), gu�d

S
= 0.93(33)

and g
u�d

T
= 1.004(28) [36, 37, 53] were obtained from

a single physical mass ensemble generated with 2-flavors
of maximally twisted mass fermions with a clover term
at a = 0.0938(4) fm, M⇡ = 130.5(4) MeV and M⇡L =
2.98. Assuming that the number of quark flavors and
finite volume corrections do not make a significant di↵er-
ence, one could compare them against our results from
the a09m130W ensemble with similar lattice parame-
ters: g

u�d

A
= 1.249(21), gu�d

S
= 0.952(74) and g

u�d

T
=

1.011(30). We remind the reader that this comparison is
at best qualitative since estimates from di↵erent lattice
actions are only expected to agree in the continuum limit.

Based on the trends observed in our CCFV fits shown
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FIG. 5. A summary of results for the axial isovec-
tor charge, gu�d

A
, for Nf = 2- 2+1- and 2+1+1-

flavors. Note the much finer x-axis scale for the plot
showing experimental results for gu�d

A
. The lattice re-

sults (top panel) are from: PNDME’18 (this work);
PNDME’16 [3]; CalLat’18 [47]; LHPC’14 [54]; LHPC’10 [55];
RBC/UKQCD’08 [56]; Lin/Orginos’07 [57]; ETMC’17 [37,
53]; Mainz’17 [58] RQCD’14 [59]; QCDSF/UKQCD’13 [60];
ETMC’15 [61] and RBC’08 [62]. Phenomenological and other
experimental results (middle panel) are from: AWSR’16 [63]
and COMPASS’15 [64]. The results from neutron de-
cay experiments (bottom panel) have been taken from:
Brown’17 [9]; Mund’13 [10]; Mendenhall’12 [8]; Liu’10 [65];
Abele’02 [66]; Mostovoi’01 [67]; Liaud’97 [68]; Yerozolim-
sky’97 [69] and Bopp’86 [70]. The lattice-QCD estimates in
red indicate that estimates of excited-state contamination,
or discretization errors, or chiral extrapolation were not pre-
sented. When available, systematic errors have been added to
statistical ones as outer error bars marked with dashed lines.

in Figs. 2–4, we speculate where one may expect to see a
di↵erence due to the lack of a continuum extrapolation in
the ETMC results. The quantities that exhibit a signifi-
cant slope versus a are g

u�d

A
and g

u�d

S
. Again, under the

assumptions stated above, we would expect ETMC val-
ues gu�d

A
= 1.212(40) to be larger and g

u�d

S
= 0.93(33) to

be smaller than our extrapolated values given in Eq. (13).
We find that the scalar charge (ignoring the large error)
fits the expected pattern, but the axial charge does not.
We also point out that the ETMC error estimates are

taken from a single ensemble and a single value of the
source-sink separation using the plateau method. Our re-
sults from the comparable calculation on the a09m130W
ensemble with ⌧ = 14 (see Figs. 10 and 16 and results in
Table XIII), have much smaller errors.

Compilation of results

Example: Axial charge and form factors 
of the nucleon from lattice QCD

FLAG Review (2019), EPJC 80, 113 (2020).

Isovector axial form factor results

Meyer, Walker-Loud, and C. Wilkinson,  
arXiv:2201.01839 [hep-lat].

from work with all sources of uncertainty under control [251] and from a compendium [256].
Several lessons can be taken from these plots and details inferred from them. The most
striking is how the lattice data—for individual ensembles at nonzero lattice spacing and
unphysical light-quark mass, but also for continuum–physical-mass extrapolations—lie sys-
tematically above inferences from experiment. That said, the slopes agree at Q2 = 0. Two
mature works obtain axial radii rA = 0.654(47) fm [251] {rA = 0.670(31) fm [249]} in the
continuum limit. These values are based on a model-independent parametrization of the
shape founded on analyticity and unitarity, known as the z expansion. Using this approach
to the form-factor shape and minimal assumptions on deuteron modeling, Ref. [257] finds
rA = 0.68(16) fm. Similar results with further assumptions obtain similar values with 3%
quoted uncertainty [260, 261]. The agreement is (now) quite good. Note that these radii
correspond closely to the black dashed line with axial “mass” MA = 1.026 GeV in the left
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FIG. 4. Electric (left) and magnetic (right) form factors of the nucleon vs. squared momentum
transfer Q2 = �q

2 in nucleon-mass units. The colored symbols denote explicit calculations at vari-
ous lattice spacing (a ⇡ 0.13, 0.09, and 0.07 fm), pion mass (M⇡ ⇡ 285, 270, or 170 MeV), volumes
(“large” or “larger L”). The Padé parametrization of Kelly [253] of experimental measurement is
shown for comparison (black curve). From Ref. [251].
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FIG. 5. Isovector axial form factors of the nucleon vs squared momentum transfer Q2 = �q
2. Left:

results as in Fig. 4 compared with dipole parametrization for three choices of the axial “mass”
MA; from Ref. [251]. Right: compendium of results [256] compared with the z expansion from ⌫D
scattering [257]; shown here are continuum limit fits from RQCD [249] and NME [251], and single-
ensemble data points from LHPC [246], PACS [248], ETMC [250], CalLat [258] and Mainz [259];
from Ref. [256].
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For the status and future of multi-hadron 
spectroscopy and transitions from lattice QCD, 
see: Bulava et al, arXiv: 2203.03230 [hep-lat].

For the status and future of parton distribution functions 
from lattice QCD, see: Constantinou et al, arXiv: 
2202.07193 [hep-lat].



UNCOVERING NEW-PHYSICS SIGNALS IN NUCLEONS AND NUCLEI

Cirigliano, ZD et al (USQCD), Eur. Phys. J. A (2019) 55: 197, Kronfeld et al (USQCD), Eur. Phys. J. A 55 (2019) 11, 196.

Physics Target Quantity Experiments

CP Violation and Neutrino 
Phenomenology

Neutrino-nucleus Scattering 
Cross Sections

DUNE, other Long-baseline 
Neutrino Experiments

Baryon Number Violation and 
Grand Unified Theories

Proton Decay Matrix 
Elements

DUNE, Hyper-Kamiokande

Baryon Number minus 
Lepton Number Violation

Neutron-antineutron Matrix 
Elements

ILL, ESS

Super-K, DUNE and other 

reactors

Lepton  
Flavor Violation

 Nucleon and Nuclei Form 
Factors

Mu2e, COMET 

Lepton  
Number Violation

0νββ Matrix Elements EXO, Tonne-scale 0νββ

CP Violation and Baryon 
Asymmetry in Universe

Electric Dipole Moment
Hg, Ra,  n EDM at SNS and 

LANL

Dark Matter and New Physics 
Searches

Nucleon and Nuclei Form 
Factors

Dark Matter Experiments,

Precision Measurements



MOTIVATION AND 
TARGET OBSERVABLES

e

e

LNV from dimension-9 operators (“short-
distance” mechanisms). Requires matrix 
elements of 4-quark charge-changing 
operators

Tonne-scale experiment planned in the U.S., 
design and interpretation of the results requires 
nuclear matrix elements in various scenarios. 


LNV from dimension-5 operator (light Majorana 
neutrino exchange) 



CURRENT STATUS

e

e

Long-range 
contribution

Short-range 
contribution
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FIG. 4. The left panel shows the quantity R
+
3S1,1S0

(t) used to extract the pp ! d bare transition matrix

element from the constant fit to its late-time region [16]. The right panel is a plot of quantity R
+
3S1,1S0

(t) used
to estimate the magnitude of excited-state contamination to the extraction of pp ! d bare matrix element,
see Sec. III B 2. Blue circles and orange diamonds denote results determined using SP and SS correlation
functions, respectively. The horizontal bands show constant correlated SP-SS fits to the late-time behavior
of the quantities.

transition matrix element and is shown in the right panel of Fig. 4. The late-time behavior of
this quantity returns a very small value indicating that the Nc scaling is borne out, recalling from
Sec. III B 2 that this quantity vanishes as 1/N4

c in the SU(4) Wigner-symmetry limit. With this
supporting evidence, it is reasonable to conclude that the contaminating term c� in Eq. (20) is
O(1/N4

c ) ⇠ O(1%) of the dominant term.
Fits to both the mass di↵erence, �, and to the bare pp ! d matrix element on each boot-

strap ensemble allow for the deuteron pole term to be determined and subtracted (in all cases,
the statistically-cleaner SP results are used for the fits shown below). The results obtained for
Rnn!pp(t) and R̂nn!pp(t) are shown in Fig. 5 for both the SS and SP source–sink combinations.
Comparing Fig. 5(b) with Fig. 5(a) (note the di↵erent scales), it is clear that the subtracted long-

(a) (b)

FIG. 5. The (a) ratio Rnn!pp(t) and (b) subtracted ratio R(sub)
nn!pp(t) that are constructed from the SP and

SS correlation functions, as given in Eq. (31) and Eq. (33) respectively. Blue circles and orange diamonds
denote results determined using SP and SS correlation functions, respectively. The horizontal bands show
constant correlated SP-SS fits to the late-time behavior of the quantities.
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FIG. 6. (a) The combination R(lin)
nn!pp(t) corresponding at late times to the unrenormalized short-distance

contribution to the matrix element as shown in Eq. (32) and Eq. (33). (b) R(full)
nn!pp(t), the sum of the

long-distance and short-distance contributions to the matrix element. In both panels, the orange diamonds
and blue circles correspond to the SS and SP results, respectively. The horizontal bands denote fits to the
SP results at late times, used to extract the final values of the matrix elements. NORMALISE by g2

A/� ??

alter the results herein. In the future it will be important to investigate these limitations of the
current work. DISCUSS FURTHER

V. SECOND-ORDER WEAK PROCESSES IN PIONLESS EFT

In this section, the results of the LQCD calculations are matched to EFT(⇡/), and explicitly
used to determine the coe�cient of a short-distance two-nucleon, second-order weak field operator
in the dibaryon formalism. In principle, with this contribution constrained, EFT(⇡/) can be used to
calculate ��-decay rates of light nuclei at this pion mass. EFT(⇡/) [19, 49–53] is a natural approach
to use at this heavy pion mass as the momenta involved in a 2⌫�� decay are small compared
with the start of the nucleon-nucleon t-channel cut when isospin breaking and electromagnetic are
included (in the current, isospin-symmetric numerical work, the transition is below threshold for
massive leptons). At lighter pion masses, including the physical point, and for 0⌫�� decay, pionfull
EFTs will be required [54].

A. Review of pionless EFT in the dibaryon approach

At momenta well below the pion mass, |p| ⌧ m⇡, the strong interactions of two-nucleon systems,
as well as their interactions with external currents, can be systematically studied in the framework
of EFT(⇡/) [19, 50, 52, 53]. As s-wave interactions in the two-nucleon sector drive the system
towards an infrared fixed point, they require summation to all orders and generate anomalously
large two-nucleon scattering lengths. However, interactions in higher partial waves can be included
perturbatively. In the dibaryon formulation of the EFT [53, 55], this resummation fully dresses the
s-wave dibaryon propagators. In terms of the nucleon field, N , and the isosinglet, ti, and isotriplet,
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A+

µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective
two-body operator corresponding to two insertions of the axial current (right), A+

µ A+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+

3 ⇠ ⌧+�3), it is convenient to
construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,

CNN,NN ⌘

0

@
Cnn,nn Cnn,np(3S1) Cnn,pp

Cnp(3S1),nn Cnp(3S1),np(3S1) Cnp(3S1),pp

Cpp,nn Cpp,np(3S1) Cpp,pp

1

A . (46)

The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) ·
1

13⇥3 � I(E) · D(E)
· Z†, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as

Z ⌘

0

@
Zs 0 0
0 Zt 0
0 0 Zs

1

A , (48)

where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
A generalized bare propagator matrix, D, at second order in the weak field is introduced,

D ⌘

0

B@
Ds �il̃1,ADsDt� (�ih̃2,S � l̃21,ADt)Ds

2�2

�il̃1,ADsDt� Dt �il̃1,ADsDt�
(�ih̃2,S � l̃21,ADt)Ds

2�2
�il̃1,ADsDt� Ds

1

CA ,

(49)

to incorporate the e↵ect of channel-changing contact interactions on the bare dibaryon propagators.
The LECs have been redefined as l̃1,A = 1

2M
p
r1r3

l1,A and h̃2,S = 1
2Mr1

h2,S , and � denotes the

NN
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Constraint on the 
new short-range LEC.@ m⇡ ⇡ 800 MeV

H2,S = 4.7(1.3)(1.8) fm

2νββ DECAY OF TWO NEUTRONS

NPLQCD collaboration, Phys. Rev. Lett. 119, 062003 (2017), Phys. Rev. D 96, 054505 (2017).
See also Feng et al, Phys. Rev. Lett. 122, 022001 (2019), and Detmold et al, arXiv:1811.05554 [hep-lat] for 
the  decay of the pion.0νββ

<latexit sha1_base64="B3+7AHXaKrbK78VB/K4+/8k+i6k=">AAAB/XicbVDLSgMxFM34rPU1PnZugkVwIWWmiLosuumyon1AZxgyaaYNTTJDkhHqUPwVNy4Ucet/uPNvzLSz0NYDgcM593JPTpgwqrTjfFtLyyura+uljfLm1vbOrr2331ZxKjFp4ZjFshsiRRgVpKWpZqSbSIJ4yEgnHN3kfueBSEVjca/HCfE5GggaUYy0kQL70FOUexzpYRhmjUmQ1c7uJoFdcarOFHCRuAWpgALNwP7y+jFOOREaM6RUz3US7WdIaooZmZS9VJEE4REakJ6hAnGi/GyafgJPjNKHUSzNExpO1d8bGeJKjXloJvOcat7Lxf+8XqqjKz+jIkk1EXh2KEoZ1DHMq4B9KgnWbGwIwpKarBAPkURYm8LKpgR3/suLpF2ruhdV9/a8Ur8u6iiBI3AMToELLkEdNEATtAAGj+AZvII368l6sd6tj9noklXsHIA/sD5/AGcOlTA=</latexit>⇠ H2,S

<latexit sha1_base64="l7a/+4kJKAtHqpKm9pfAg1hJKfI=">AAACG3icbVDLSgMxFM3UV62vUZdugkVwIWWmiLosunFZwT6gMwyZ9LYNzWSGJCOUof/hxl9x40IRV4IL/8ZMOwttPZBwcu49Se4JE86Udpxvq7Syura+Ud6sbG3v7O7Z+wdtFaeSQovGPJbdkCjgTEBLM82hm0ggUcihE45v8nrnAaRisbjXkwT8iAwFGzBKtJECuy4E9nSMkwR7ZwBmw15sDPl9mSfSaQCL58CuOjVnBrxM3IJUUYFmYH96/ZimEQhNOVGq5zqJ9jMiNaMcphUvVZAQOiZD6BkqSATKz2azTfGJUfp4EEuzhMYz9bcjI5FSkyg0nRHRI7VYy8X/ar1UD678jIkk1SDo/KFByrEJIw8K95kEqvnEEEIlM3/FdEQkodrEWTEhuIsjL5N2veZe1Ny782rjuoijjI7QMTpFLrpEDXSLmqiFKHpEz+gVvVlP1ov1bn3MW0tW4TlEf2B9/QAnqKGQ</latexit>

nn ! pp ee ⌫e⌫e



0νββ DECAY OF PIONS e

e
CURRENT STATUS

Nicholson et al (CalLatt), Phys. Rev. Lett. 121, 172501 (2018).
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STRAIGHTFORWARD CHALLENGING
EXTREMELY 

CHALLENGING

TO BE ACCOMPLISHED OVER THE NEXT 
DECADE AND BEYOND

e

e

Pion matrix elements 
of local operators 
(almost done).

Two-nucleon and nucleon-pion 
matrix elements of local 
operators at large quark masses

Pion matrix element in 
light-neutrino exchange 
scenario (almost done)

Two-nucleon matrix element in 
light-neutrino exchange scenario 
at large quark masses

Fully controlled physical point 
NN matrix elements in light-
neutrino exchange scenario

More ambitious: higher-N 
matrix elements to diagnose 
any potential issues with 
many-body calculations of 
0vBB decay.



Physics Target Quantity Experiments

CP Violation and Neutrino 
Phenomenology

Neutrino-nucleus Scattering 
Cross Sections

DUNE, other Long-baseline 
Neutrino Experiments

Baryon Number Violation and 
Grand Unified Theories

Proton Decay Matrix 
Elements

DUNE, Hyper-Kamiokande

Baryon Number minus 
Lepton Number Violation

Neutron-antineutron Matrix 
Elements

ILL, ESS

Super-K, DUNE and other 

reactors

Lepton  
Flavor Violation

 Nucleon and Nuclei Form 
Factors

Mu2e, COMET 

Lepton  
Number Violation

0νββ Matrix Elements EXO, Tonne-scale 0νββ

CP Violation and Baryon 
Asymmetry in Universe

Electric Dipole Moment
Hg, Ra,  n EDM at SNS and 

LANL

Dark Matter and New Physics 
Searches

Nucleon and Nuclei Form 
Factors

Dark Matter Experiments,

Precision Measurements

UNCOVERING NEW-PHYSICS SIGNALS IN NUCLEONS AND NUCLEI

Cirigliano, ZD et al (USQCD), Eur. Phys. J. A (2019) 55: 197, Kronfeld et al (USQCD), Eur. Phys. J. A 55 (2019) 11, 196.



Standard Model input is necessary to 
interpret the results of DM searches and 
translate these into limits on DM models.

The low-energy limit of a generic spin-
independent interaction is scalar coupling 
to any quark flavor. 


Lattice QCD is the key tool to obtain the 
strange contributions.


Spin-dependent couplings and other 
interactions require knowledge of parton 
structure of nuclei.

MOTIVATION AND 
TARGET OBSERVABLES



SIGMA TERMS IN NUCLEON

�s = mshN |s̄s|Ni�⇡N =
1

2
(mu +md)hN |ūu+ d̄d|Ni

CURRENT STATUS

Aoki et al (Flavor Lattice Averaging Group), FLAG Review (2021).FIG. 3. Comparisons of the “nucleon sigma term” �⇡N (left) and the strangeness content of the
nucleon �s (right), from Ref. [181]. Green symbols [176–180] are included in the averages (gray
bands); red symbols fall short of certain criteria and are omitted. Blue pentagons denote analyses
of several data sets, often including lattice-QCD results. NB: the Nf = 2 results omit the strange
sea and are, thus, not recommended for phenomenology.

when combined with �-decay measurements, complement the LHC search for new quark
interactions, probing e↵ective scales of new physics close to 10 TeV [190, 193, 194].

E. Hadron spectroscopy

The prospect of ab initio calculations of the hadron spectrum was one of the original
attractions of numerical lattice QCD. For the most common mesons and baryons, this task
was in a sense completed about a decade ago; see Fig. 2 of Ref. [195]. In more recent years,
common hadron masses are studied carefully for technical purposes such as tuning the quark
masses and converting from lattice to physical units.

At the same time, the community has moved on to more challenging and interesting
questions [1, 196–198], such as determining resonance widths and the masses of more exotic
hadrons, such as those discovered at BaBar, Belle, CDF, D0, and LHCb—the “XY Z”
states—tetraquarks, pentaquarks, and dibaryons [199–210]. Determining the structure of
these states is a compelling and still unanswered question.

Also falling within the rubric of spectroscopy is the calculation of decay widths and
scattering amplitudes, because they can be determined from finite-volume energy levels
via various universal formulas [211–220]; for a review, see Ref. [221]. Thus, the resonance
properties of the ⇢ and K⇤ mesons are now well studied. Future applications in include
electromagnetic transitions such as N� ! � ! N⇡ or similarly with a weak current.
See Refs. [222, 223] for studies of the similar process ⇡� ! ⇢ ! ⇡⇡. As mentioned in
Sec. II A, weak decays to vector mesons, such as B ! K⇤l⌫ or B ! D⇤l⌫ play important
roles in the “flavor anomalies”, and a completely rigorous treatment requires these finite-
volume spectroscopic techniques.8 Coupled-channel scattering in D⇡-D⌘-DsK̄ has been

8 In the case of the D⇤, chiral perturbation theory is used to control and estimate uncertainties in D
⇤ $ D⇡.
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SCALAR RESPONSE OF LIGHT NUCLEI

Nf = 3, m⇡ = 0.806 GeV, a = 0.145(2) fm 4

this Letter. Taken as a whole, the results indicate that
nuclear e↵ects in the charges are typically at the <

⇠ 2%
level in light nuclei with atomic number A  3. The
exception to this picture is in the scalar channel where
⇠ 10% e↵ects are seen. For each type of interaction,
nuclear modifications scale approximately with the mag-
nitude of the corresponding charge. While strange quark
(equivalently, disconnected) contributions to the nuclear
axial and tensor charges are negligible, strange quarks
make significant contributions to the scalar charges, as
seen for matrix elements of the same operators in the
proton in previous studies [64, 66, 67].

The tensor charges encode the quark EDM contribu-
tions to the EDMs of light nuclei and thus set bounds
on BSM sources of CP violation [10]. Given that the CP
violation in the weak interaction is insu�cient to gen-
erate the observed matter-anti-matter asymmetry of the
universe (assuming exact CPT invariance and baryon–
anti-baryon symmetry of the initial conditions), many
experiments have sought to measure permanent EDMs
as evidence for such sources. Even with a successful
measurement of a permanent EDM, fully disentangling
the sources of CP violation requires multiple observ-
ables [7, 68], and experiments searching for EDMs of light
nuclei are in the planning stages [69–71]. Nuclear e↵ects
in the tensor charge have not been previously observed;
here they are resolved for the first time and found to
be at the few percent level for A  3 at these quark
masses. Similarly, modification of the axial charge in nu-
clei is found to be at the 1–2% level for both the isoscalar
and isovector combinations. The isovector 3He charge is
consistent with values extracted from measurements of
the � decay of tritium [72] and is more precise than our
previous work [46]. Nuclear e↵ects in the axial charges
can test predictions that nuclear modification of the spin-
dependent structure function may be significantly di↵er-
ent than the modification of the spin-independent struc-
ture function [73–75]. The small deviation resolved in
this study implies that quarks in nuclei carry a di↵erent
fraction of the total spin than quarks in free nucleons.

In contrast to the few-percent nuclear e↵ects seen in
the tensor and axial charges, the scalar charges of light
nuclei are suppressed at the 10% level relative to expec-
tations for non-interacting nucleons.2 In phenomenolog-
ical models of nuclei such as the Walecka model [76, 77]
and the quark-meson coupling model [78], a mean scalar
field in which the nucleons move is an important con-
tribution to the saturation of nuclear matter. The large
modifications of the scalar charges found here suggest
that models based on similar mechanisms may approxi-

2
The sign of these nuclear e↵ects is consistent with the deeper

binding of nuclei with increasing quark masses that is found from

direct calculations of the binding energies of light nuclei [45].
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FIG. 3: The calculated values of �R(f)
X for the deuteron (cir-

cles), diproton (diamonds) and 3He (squares) to those in the
proton. The panels display the results obtained for the scalar
(top), axial (middle) and tensor (bottom) interactions, and
the columns within the panels display results for the di↵erent
flavor structures of the currents, as indicated at the top of the
figure. In each case, the statistical and systematic uncertain-
ties have been combined in quadrature. The points exactly
at zero are constrained to vanish by spin and/or isospin sym-
metry, while ratios are not given for the strange quark axial
and tensor charges as both the numerators and denominator
are consistent with zero.

mately describe nuclei even at unphysical values of the
quark masses. A determination of the scalar polar-
izabilities through extensions of the calculations pre-
sented here (using analogues of the methods discussed
in Refs. [48, 49, 79]) would be interesting in this context
[80, 81].

The scalar charges of nuclei are also important in the
interpretation of experimental searches for dark mat-
ter [26–31, 33–39, 41, 42]. These charges quantify the
contribution of explicit chiral symmetry breaking to nu-
clear masses [82, 83], and define nuclear �-terms. The

Kaixuan Ni                               Recent Results from Dark Matter Direction Detection                    CIPANP 2018, 5/29-6/3/2018, Palm Springs, CA

Direct Detection of WIMPs by 2025?

 30

Neutrino Coherent Scattering

CMSSM

Status of direct detection of WIMP by 2025

Courtesy of Kaixuan Ni

CURRENT STATUS

Chang et al (NPLQCD), Phys. Rev. Lett. 
120, 152002 (2018).



Few-percent precision on 
nucleon matrix elements

Fully controlled 2 and 3 nucleon 
matrix elements (disconnected, 
multiple lattice spacings, volumes, 
chiral extrapolation). Scalar matrix 
elements are the priority.

Spin-dependent interactions, 
PDF of nucleons, etc.

Direct evaluation in larger 
nuclei

TO BE ACCOMPLISHED OVER THE NEXT 
DECADE AND BEYOND

STRAIGHTFORWARD CHALLENGING
EXTREMELY 

CHALLENGING



Physics Target Quantity Experiments

CP Violation and Neutrino 
Phenomenology

Neutrino-nucleus Scattering 
Cross Sections

DUNE, other Long-baseline 
Neutrino Experiments

Baryon Number Violation and 
Grand Unified Theories

Proton Decay Matrix 
Elements

DUNE, Hyper-Kamiokande

Baryon Number minus 
Lepton Number Violation

Neutron-antineutron Matrix 
Elements

ILL, ESS

Super-K, DUNE and other 

reactors

Lepton  
Flavor Violation

 Nucleon and Nuclei Form 
Factors

Mu2e, COMET 

Lepton  
Number Violation

0νββ Matrix Elements EXO, Tonne-scale 0νββ

CP Violation and Baryon 
Asymmetry in Universe

Electric Dipole Moment
Hg, Ra,  n EDM at SNS and 

LANL

Dark Matter and New Physics 
Searches

Nucleon and Nuclei Form 
Factors

Dark Matter Experiments,

Precision Measurements

UNCOVERING NEW-PHYSICS SIGNALS IN NUCLEONS AND NUCLEI

Cirigliano, ZD et al (USQCD), Eur. Phys. J. A (2019) 55: 197, Kronfeld et al (USQCD), Eur. Phys. J. A 55 (2019) 11, 196.



Reliable matrix elements will help establish pattern of LFV signatures in various decay channels 
depending on the underlying mechanism.

6 LORENZO CALIBBI and GIOVANNI SIGNORELLI
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Figure 1. – Limit on the branching ratio of flavour violating muon decays as a function of the
year. The three main clusters correspond to the usage of cosmic ray muons (until the 1950s),
stopped pion beams (until the 1970s) and stopped muon beams. Presently the best limit is that
on the µ+

! e+� decay set by the MEG experiment [49].

searching for Charged Lepton Flavour Violation (CLFV) is the aim of the present review.
We first give a theoretical introduction to set the stage and to see in a more formal and
detailed way what we mentioned above, as well as to discuss how and why Lepton Flavour
can be violated in extensions of the Standard Model: what, in other words, makes CLFV
processes so sensitive to new physics.

We will then review the general aspects of the experimental searches and discuss
some of the present and planned experiments with particular emphasis on the transition
between the first and the second family of leptons. To this class, in fact, belong the
three most searched modes – µ+

! e+� (“mu-to-e-gamma”), µ�N ! e�N (“mu-e-
conversion”), and µ+

! e+e�e+ (“mu-to-three-e”) – due to the copious availability of
the parent particle in the cosmic radiation first and at dedicated accelerators afterwards.
The history of the limit on the probability of these processes is shown in Figure 1, which
starts with the first experiment performed by Hinks and Pontecorvo in 1947 [259]. They
stopped cosmic ray muons in a lead absorber and measured the coincidence between
signals from two Geiger-Müller counters: having seen no such coincidence they gave as
a limit essentially the inverse of the number of observed muons. The limits on the three
processes improved as artificial muons were produced, stopping pion beams first (until
the 1970s) and starting directly with muon beams afterwards.

These experiments give the best constraints to date to possible extensions of the Stan-
dard Model inducing CLFV, therefore they play a prominent role in this review. There

MOTIVATION AND 
TARGET OBSERVABLES

Calibbi and Signorelli, Riv. Nuovo Cim. 41, 71 (2018).



Nucleon form factors (scalar, 
vector, axial, tensor, 
pseudoscalar) at .q2 = m2

μ

Most relevant is the set of scalar 
form factors (with u, d, s flavor) 
and GG gluonic operator.

Few-percent precision on 
nucleon form factors

Going beyond impulse approx: 
directly evaluating matrix 
elements in nuclei (2 and 3 
body contributions)

Directly evaluating matrix 
elements in larger nuclei

TO BE ACCOMPLISHED OVER THE NEXT 
DECADE AND BEYOND

STRAIGHTFORWARD CHALLENGING
EXTREMELY 

CHALLENGING
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UNCOVERING NEW-PHYSICS SIGNALS IN NUCLEONS AND NUCLEI

Cirigliano, ZD et al (USQCD), Eur. Phys. J. A (2019) 55: 197, Kronfeld et al (USQCD), Eur. Phys. J. A 55 (2019) 11, 196.
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MOTIVATION AND 
TARGET OBSERVABLES

GUT and SUSY-GUT constraints require meson matrix 
elements. Some models predict suppression of  decay 
matrix elements due to nonperturbative dynamics.


Upcoming DUNE will examine  and          
decays with better precision, future hyper-K will further 
improve p-decay constraints. 

p →
p

p → Klν p → ππe+



Form factors parametrizing the shown normalized matrix elements at given values of momentum transfer:

0 0.05 0.1 0.15 0.2
[GeV2]

W0
Wµ

W0
α,β

Wµ
α,β

-<π0|(ud)RuL|p>

<π0|(ud)LuL|p>

<K0|(us)RuL|p>

<K0|(us)LuL|p>

-<K+|(us)RdL|p>

<K+|(us)LdL|p>

-<K+|(ud)RsL|p>

<K+|(ud)LsL|p>

-<K+|(ds)RuL|p>

-<K+|(ds)LuL|p>

<η|(ud)RuL|p>

<η|(ud)LuL|p>

Figure 12: Summary of matrix elements obtained in our study; “W0, Wµ” which are evaluated

from “direct” method and “Wα,β
0 , Wα,β

µ ” which are evaluated “indirect” method, including the
systematic error as discussed in text.
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Some models of B-L violation do not 
allow the proton decay, therefore, 
neutron-antineutron oscillation bounds 
can provide powerful constraints.


Two types of experiments: slow neutron 
beams and oscillation in nuclear medium 
with a distinct 5-pion final state.

Theoretical uncertainties in neutron beam expts 
easier to control. Bounds could be improved by 
a factor of 1000 in next experiments.

MOTIVATION AND 
TARGET OBSERVABLES

Lattice QCD evaluates matrix elements of 6-quark 
operators that convert a neutron to an antineutron.
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FIG. 2. Ratios of three-point correlation functions for oper-
ator Q2 to two-point functions vs. operator insertion time ⌧

and 10 di↵erent source/sink separations t. Lattice data points
are shifted for visibility. These data are compared to two-state
fits (colored shaded bands) used to extract the ground state
bare matrix elements, which are shown with statistical uncer-
tainty for a particular value of fit ranges (horizontal bands).

turbative e↵ects / p
�2, discretization e↵ects / (ap)2,

and rotational symmetry breaking. We analyze these ef-
fects following Ref. [33], with a representative fit for op-
erator Q2 and µ0 = 2 GeV shown in Fig. 3. Fits with
varying momentum ranges up to 1.6  p  4.5 GeV are
used to define central values and stochastic and system-
atic uncertainties for Z

RI
I

. We have found no substantial
di↵erence between fits using 1-loop and 2-loop perturba-
tive factors in Eq. (10). Fit details and similar plots for
other operators can be found in Ref. [23]. RI-MOM ma-
trix element results are then converted to the MS(2 GeV)
and MS(700 TeV) scheme using 1-loop matching [22],

D
n

���QMS
I

���n
E

=


Z

MS
I,Nf=4

ZRI
I,Nf=3

�pert
Z

RI
I,Nf=3 hn|QI |ni , (11)

where the di↵erence between Nf = 3 and Nf = 4 QCD
is taken into account by matching ↵S [34] and operator
normalization at the charm quark threshold µ = Mc.
Statistical and systematic uncertainties of the renormal-
ization factors and the bare matrix elements are added
in quadrature. Higher-order matching uncertainties are
estimated to be . 7% based on the size of 1-loop match-
ing e↵ects [22] and are neglected. Final results for the

FIG. 3. RI-MOM “scale-independent” renormalization fac-
tors Z

SI for the operator Q2. Lattice data (circles) are
fit to a constant (star) plus lattice artifacts: including /
(ap)2 (dashed line), / (ap)�2 (solid line), and O(4)-breaking
(crosses) terms [33].

MS matrix elements are shown in Tab. I and compared
to previous “MIT bag model” results.
Phenomenological implications — In BSM theo-

ries where �B = 2 transitions are permitted, experimen-
tally observable n-n oscillations are low-energy phenom-
ena that can be described in an EFT containing only SM
fields. The low-energy EFT will include �B = 2 terms
involving the operators QI above,

Ln-n =
7X

I=1

�
CI(µ)QI(µ) + C

P

I
(µ)QP

I
(µ)

�
, (12)

where the CI are numerical coe�cients with mass di-
mension (�5) that are predicted to be non-zero in some
BSM theories. The SU(2)L-singlet operators are EW-
symmetric and their coe�cients should scale as C1,2,3,4 ⇠

⇤�5
BSM in naive dimensional analysis. In contrast, the

SU(2)L non-singlet operators Q
P
1,...,7 and Q

(P )
5,6,7 can only

appear in an SM gauge-invariant Lagrangian in prod-
ucts with additional SM Higgs (or BSM) fields to make
them SU(2)L singlets. Assuming the former, their co-
e�cients should scale as C

P
1,...,7(⇤BSM) ⇠ v

2⇤�7
BSM and

C5,6,7 ⇠ v
4⇤�9

BSM, where v is the vacuum expectation
value of the Higgs field. For v ⌧ ⇤BSM, this provides a
significant additional suppression on n-n oscillation rate
contributions from SU(2)L-non-singlet operators.

The n-n oscillation rate is given by the matrix element
of the associated Hamiltonian between neutron and an-
tineutron states, which in the isospin limit of QCD sim-
plifies to

⌧
�1
n-n =

���
X

I=1,2,3,5

bCI(µ) hn̄|QI(µ) |ni
��� , (13)

where bCI = CI � C
P

I
for I = 1, . . . , 4 and bC5 = (C5 �

C
P
5 )+ (C6�C

P
6 )� 2

3 (C7�C
P
7 ). Contributions involving

C
(P )
4 vanish exactly in the isospin limit considered here,

3

Operator MMS
I MMS

I
MMS

I
MIT bag A

MMS
I

MIT bag B

(2 GeV) (700 TeV) (2 GeV) (2 GeV)

Q1 �46(13) �26(7) 4.2 5.2

Q2 95(17) 144(26) 7.5 8.7

Q3 �50(12) �47(11) 5.1 6.1

Q5 �1.06(48) �0.23(10) -0.8 1.6

TABLE I. For each operator QI we show its renormalized

matrix element value MMS
I in units of [10�5 GeV6]. The total

uncertainty includes statistical and systematic errors added
in quadrature. Renormalized results are obtained through
nonperturbative RI-MOM renormalization and perturbative
matching to MS at two scales: 2 GeV and 700 TeV in column
two and three, respectively. The last two columns show a
comparison between the Lattice QCD matrix elements and
the results of the same matrix elements for two choices of the
“MIT bag model” from Ref. [12].

steps using point-source quark propagators aided by all-
mode-averaging (AMA) sampling [27] to reduce stochas-
tic uncertainty. On each configuration, we compute 1 ex-
act and 81 low-precision samples evenly distributed over
the 4D volume. For the latter, quark propagators are
computed with low-mode deflation and 250 iterations of
the conjugate gradient algorithm. The propagators are
contracted into intermediate baryon blocks [28, 29] rep-
resenting (anti)neutron source or sink operators made
of point and Gaussian-smeared quarks and denoted by
n
J=P,S , respectively. These blocks are finally contracted

into (anti)neutron two-point correlation functions of P

source and J = P, S sink operators,

G
PJ

2pt(t) =
X

x

hn
J

" (x, t)nP

" (0)i =
X

n

q
ZJ
n ZP

n e
�Ent , (7)

as well as three-point correlation functions involving
J = S, P antineutron sources, neutron sinks, and six-
antiquark operators Q̄I that are obtained from QI by
charge conjugation and have identical matrix elements,

G
JJ

0

3pt (⌧, t; QI) =
X

x,y

hn
J

" (x, t � ⌧)QI(0)nJ
0

# (y,�⌧)i

=
X

n,m

q
ZJ
n ZJ 0

m e
�En(t�⌧)

e
�Em⌧

hn, " |QI |m, " i , (8)

where |m, "i (|n, "i) denote the spin-up (anti)neutron
states, (⌧, t) are the Euclidean time intervals from the
source to the operator and the sink, respectively.

The n-n ground-state matrix elements are extracted
with two-state fits using optimal shrinkage [30], variable
projection (VarPro) [31], and weighted averages of results
for a variety of source/sink separations that are described
at length in our companion paper [23]. First, G

PP
2pt and

G
PS
2pt are fitted in order to determine E0,1 and

q
Z

P,S

0 . An
example fit is shown in Fig. 1. These results are subse-
quently used to extract matrix element results from linear

FIG. 1. Neutron e↵ective mass M
PJ
n (t) = ln

GPJ
2pt(t)

GPJ
2pt(t+a)

deter-

mined from point-point and point-smeared (J = P, S) two-
point correlation functions. Lattice data points are shifted
for visibility and compared to two-state fits (shaded bands).
The asymptotic t result is compatible with the nucleon mass
when converted to physical units, indicating negligible dis-
cretization and finite volume e↵ects.

fits to G
SS
3pt and G

PS
3pt + G

SP
3pt . Ten di↵erent source/sink

separations are included in order to isolate and remove
excited state e↵ects. Ratios of G

JJ
0

3pt to G
JJ

0

2pt for operator
Q2, that reach a plateau when the ground state saturates
the correlation functions and excited state contributions
have become negligible, are shown in Fig. 2 including fit
results and statistical uncertainties.

In regularization schemes which do not violate chiral

symmetry, operator mixing between Q
(P )
I

(2–4) is for-
bidden, as in the continuum perturbation theory calcula-
tion of Ref. [22]. Since quark mass, residual chiral sym-
metry breaking, and nonperturbative e↵ects might lead
to operator mixing on a lattice, we compute the renor-
malization and mixing of these operators nonperturba-
tively using the regularization-invariant-momentum (RI-
MOM) scheme [32]. RI-MOM renormalization factors
Z

RI
IJ

, Q
RI
I

= Z
RI
IJ

Q
bare
J

at momentum p are defined as

⇥
Z

RI
q

(p)
⇤�3

Z
RI
IJ

(p) ⇤JK(p) = �IK , (9)

where Z
RI
q

is the quark field renormalization and ⇤JK(p)
are amputated Green’s functions of the lattice operators
QJ and quark fields carrying momenta ±p projected onto
the spin-color-flavor structure of QK . All steps to calcu-
late the renormalization factors numerically can be found
in the companion paper [23]. We find that the matrices
⇤IJ and therefore Z

RI
IJ

are diagonal in the chiral basis
(2–4) up to O(10�3) [23], thanks to chiral symmetry of
the lattice action we use. We neglect this residual mixing
and identify ZI = ZII below.

The “scale-independent” combinations

Z
SI
I

(µ0, p) = Z
RI
I

(p)


Z

RI
I

(µ0)

ZRI
I

(|p|)

�pert
(10)

of perturbative and nonperturbative factors have residual
dependence on the lattice momentum p⌫ due to nonper-

Normalized six-quark operators matrix elements obtained from lattice QCD at the physical point:
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Rinaldi et al., Phys. Rev. Lett. 122, 162001 (2019).
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System Current SM
e 10�29 10�38

µ 10�19 10�35

⌧ 10�16 10�34

n 10�26 10�31

p 10�23 10�31

199Hg 10�29 10�33

129Xe 10�27 10�33

225Ra 10�23 10�33

TABLE I. Approximate limits on EDM’s of
various systems and their predictions from
the standard model CKM CP-violation.
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and matched from nuclear level to quark/gluon e↵ective CP-violating operators, as discussed in
the introduction. Since the structure and interactions of the nucleon are described by QCD in the
nonperturbative regime, LQCD calculations are essential to carry out this matching in a model-
independent way. At the quark-gluon level, there are several e↵ective operators that may be orga-
nized by their dimension. From the lowest-dimension dimension-4 QCD ✓QCD-term,1 to dimension-
5(6) quark-EDM and quark-gluon chromo-EDM (cEDM),2 to the dimension-6 CP-violating 4-quark
and the 3-gluon interactions (Weinberg operator, or gluon cEDM), these e↵ective operators rep-
resent BSM CP-violating interactions that are increasingly suppressed by the energy scale of the
underlying new physics. Quark/gluon CP-violating interaction can manifest itself at the nuclear
and atomic level in two ways. First, they induce intrinsic EDMs in the proton and the neutron.
Second, quark and gluon CP-violating interactions induce CP-violating nucleon and nucleon-pion
couplings that also contribute to nuclear EDMs. Quantification of the nuclear EDMs, even for
light nuclei, will require low-energy nuclear e↵ective theories and ab-initio nuclear many-body cal-
culations that are based on nuclear EFTs. For heavy nuclei, such as 199Hg and 255Ra, nuclear
modification to EDM are expected to be especially large.

ZD comments: What is the state-of-the art? An exemplary plot? Did we reach the level of
precision/advancement we promised in the 2013 whitepaper?

5-year goals and plans: LQCD calculation of nucleon EDMs is similar to calculations of nucleon
form factors, and its methodology is straightforward. However, the required statistical precision is
more di�cult to achieve because of additional (CP-violating) interactions added as perturbation to
CP -even QCD interactions. The di�culty may vary substantially depending on the CP-violating
operator in question, and in some cases the calculation may become challenging and require new
methods for evaluating LQCD correlators. The status of LQCD calculations with di↵erent CP-
violating operators is summarized below.

– Isovector quark EDM-induced p,nEDM calculations are straightforward since they are given
by the tensor charge up to electromagnetic corrections. Isoscalar quark EDM-induced
p,nEDM calculations are also straightforward, eventhough the disconnected contributions
(those arising from the interactions of sea quarks with the CP-violating currents) lead to

1 The ✓QCD term is allowed in QCD as part of the SM, although its smallness is di�cult to reconcile without
extending SM.

2 Dimension-5 operators arise from dimension-6 operators during electroweak symmetry breaking. In many explicit
BSM models, however, these operators are additionally suppressed due to the chirality violation that accompanies
them and their contribution is no larger than the dimension-6 operators.
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and matched from nuclear level to quark/gluon e↵ective CP-violating operators, as discussed in
the introduction. Since the structure and interactions of the nucleon are described by QCD in the
nonperturbative regime, LQCD calculations are essential to carry out this matching in a model-
independent way. At the quark-gluon level, there are several e↵ective operators that may be orga-
nized by their dimension. From the lowest-dimension dimension-4 QCD ✓QCD-term,1 to dimension-
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and the 3-gluon interactions (Weinberg operator, or gluon cEDM), these e↵ective operators rep-
resent BSM CP-violating interactions that are increasingly suppressed by the energy scale of the
underlying new physics. Quark/gluon CP-violating interaction can manifest itself at the nuclear
and atomic level in two ways. First, they induce intrinsic EDMs in the proton and the neutron.
Second, quark and gluon CP-violating interactions induce CP-violating nucleon and nucleon-pion
couplings that also contribute to nuclear EDMs. Quantification of the nuclear EDMs, even for
light nuclei, will require low-energy nuclear e↵ective theories and ab-initio nuclear many-body cal-
culations that are based on nuclear EFTs. For heavy nuclei, such as 199Hg and 255Ra, nuclear
modification to EDM are expected to be especially large.

ZD comments: What is the state-of-the art? An exemplary plot? Did we reach the level of
precision/advancement we promised in the 2013 whitepaper?

5-year goals and plans: LQCD calculation of nucleon EDMs is similar to calculations of nucleon
form factors, and its methodology is straightforward. However, the required statistical precision is
more di�cult to achieve because of additional (CP-violating) interactions added as perturbation to
CP -even QCD interactions. The di�culty may vary substantially depending on the CP-violating
operator in question, and in some cases the calculation may become challenging and require new
methods for evaluating LQCD correlators. The status of LQCD calculations with di↵erent CP-
violating operators is summarized below.

– Isovector quark EDM-induced p,nEDM calculations are straightforward since they are given
by the tensor charge up to electromagnetic corrections. Isoscalar quark EDM-induced
p,nEDM calculations are also straightforward, eventhough the disconnected contributions
(those arising from the interactions of sea quarks with the CP-violating currents) lead to

1 The ✓QCD term is allowed in QCD as part of the SM, although its smallness is di�cult to reconcile without
extending SM.

2 Dimension-5 operators arise from dimension-6 operators during electroweak symmetry breaking. In many explicit
BSM models, however, these operators are additionally suppressed due to the chirality violation that accompanies
them and their contribution is no larger than the dimension-6 operators.
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and matched from nuclear level to quark/gluon e↵ective CP-violating operators, as discussed in
the introduction. Since the structure and interactions of the nucleon are described by QCD in the
nonperturbative regime, LQCD calculations are essential to carry out this matching in a model-
independent way. At the quark-gluon level, there are several e↵ective operators that may be orga-
nized by their dimension. From the lowest-dimension dimension-4 QCD ✓QCD-term,1 to dimension-
5(6) quark-EDM and quark-gluon chromo-EDM (cEDM),2 to the dimension-6 CP-violating 4-quark
and the 3-gluon interactions (Weinberg operator, or gluon cEDM), these e↵ective operators rep-
resent BSM CP-violating interactions that are increasingly suppressed by the energy scale of the
underlying new physics. Quark/gluon CP-violating interaction can manifest itself at the nuclear
and atomic level in two ways. First, they induce intrinsic EDMs in the proton and the neutron.
Second, quark and gluon CP-violating interactions induce CP-violating nucleon and nucleon-pion
couplings that also contribute to nuclear EDMs. Quantification of the nuclear EDMs, even for
light nuclei, will require low-energy nuclear e↵ective theories and ab-initio nuclear many-body cal-
culations that are based on nuclear EFTs. For heavy nuclei, such as 199Hg and 255Ra, nuclear
modification to EDM are expected to be especially large.

ZD comments: What is the state-of-the art? An exemplary plot? Did we reach the level of
precision/advancement we promised in the 2013 whitepaper?

5-year goals and plans: LQCD calculation of nucleon EDMs is similar to calculations of nucleon
form factors, and its methodology is straightforward. However, the required statistical precision is
more di�cult to achieve because of additional (CP-violating) interactions added as perturbation to
CP -even QCD interactions. The di�culty may vary substantially depending on the CP-violating
operator in question, and in some cases the calculation may become challenging and require new
methods for evaluating LQCD correlators. The status of LQCD calculations with di↵erent CP-
violating operators is summarized below.

– Isovector quark EDM-induced p,nEDM calculations are straightforward since they are given
by the tensor charge up to electromagnetic corrections. Isoscalar quark EDM-induced
p,nEDM calculations are also straightforward, eventhough the disconnected contributions
(those arising from the interactions of sea quarks with the CP-violating currents) lead to

1 The ✓QCD term is allowed in QCD as part of the SM, although its smallness is di�cult to reconcile without
extending SM.

2 Dimension-5 operators arise from dimension-6 operators during electroweak symmetry breaking. In many explicit
BSM models, however, these operators are additionally suppressed due to the chirality violation that accompanies
them and their contribution is no larger than the dimension-6 operators.
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and matched from nuclear level to quark/gluon e↵ective CP-violating operators, as discussed in
the introduction. Since the structure and interactions of the nucleon are described by QCD in the
nonperturbative regime, LQCD calculations are essential to carry out this matching in a model-
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and atomic level in two ways. First, they induce intrinsic EDMs in the proton and the neutron.
Second, quark and gluon CP-violating interactions induce CP-violating nucleon and nucleon-pion
couplings that also contribute to nuclear EDMs. Quantification of the nuclear EDMs, even for
light nuclei, will require low-energy nuclear e↵ective theories and ab-initio nuclear many-body cal-
culations that are based on nuclear EFTs. For heavy nuclei, such as 199Hg and 255Ra, nuclear
modification to EDM are expected to be especially large.

ZD comments: What is the state-of-the art? An exemplary plot? Did we reach the level of
precision/advancement we promised in the 2013 whitepaper?

5-year goals and plans: LQCD calculation of nucleon EDMs is similar to calculations of nucleon
form factors, and its methodology is straightforward. However, the required statistical precision is
more di�cult to achieve because of additional (CP-violating) interactions added as perturbation to
CP -even QCD interactions. The di�culty may vary substantially depending on the CP-violating
operator in question, and in some cases the calculation may become challenging and require new
methods for evaluating LQCD correlators. The status of LQCD calculations with di↵erent CP-
violating operators is summarized below.

– Isovector quark EDM-induced p,nEDM calculations are straightforward since they are given
by the tensor charge up to electromagnetic corrections. Isoscalar quark EDM-induced
p,nEDM calculations are also straightforward, eventhough the disconnected contributions
(those arising from the interactions of sea quarks with the CP-violating currents) lead to

1 The ✓QCD term is allowed in QCD as part of the SM, although its smallness is di�cult to reconcile without
extending SM.

2 Dimension-5 operators arise from dimension-6 operators during electroweak symmetry breaking. In many explicit
BSM models, however, these operators are additionally suppressed due to the chirality violation that accompanies
them and their contribution is no larger than the dimension-6 operators.

Permanent EDM of protons, 
neutrons and nuclei would 
be the best evidence for CP 
violation beyond the SM.


Several neutron EDM 
experiments are planned 
(SNS and LANL in the U.S.), 
improving the limits by 2 
orders of magnitude. 

MOTIVATION AND 
TARGET OBSERVABLES

Plot courtesy of T. Ito.
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Constraining BSM requires combining 
different non-zero EDM results and matching 
between nuclear-level EDM and quark/gluon 
effective CP violating operators.

Quark EDM and tensor charges essentially 
done, more on isoscalar and strange/charm 
to be done. the rest of EDM contributions 
yet unconstrained.

MOTIVATION AND 
TARGET OBSERVABLES

See e.g., Bhattacharya et al, Phys. Rev. 
Lett. 115, 212002.

Alarcon et al, arXiv:2203.08103 [hep-ph].
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Isovector qchromo-EDM-
induced nEDM at the physical 
point

Isoscalar qchromo-EDM-induced 
nEDM at the physical point, requires 
subtraction of the first item

Weinberg GGG-induced p/
nEDM at large quark masses

Weinberg GGG-induced p/nEDM 
at the physical point, again mixing 
with the first item

4-quark-induced p/nEDM 
requires 4pt functions, and 
often disconnecteds contb.

EDM in deuteron and light 
nuclei

-induced p/nEDM at large 
quark masses
θQCD -induced p/nEDM at 

physical point
θQCD

NN and NNNN CP-violating 
interactions
π

TO BE ACCOMPLISHED OVER THE NEXT 
DECADE AND BEYOND

STRAIGHTFORWARD CHALLENGING
EXTREMELY 

CHALLENGING



EXPECTATIONS FOR THE NEXT DECADE
TABLE I. Lattice-QCD calculations supporting the U.S. and worldwide program in particle physics,
with target precision over the coming few years. An asterisk * indicates that the target precision
falls short of the experimental uncertainty.

Category Milestone Target Experiment(s)

precision

aµ = (gµ � 2)/2 a
HVP, LO
µ 0.5% Muon g � 2 (E989)

a
HVP, NLO
µ 10% Muon g � 2 (E989)

a
HLbL
µ 10% Muon g � 2 (E989)

CKM B physics f
B!D(⇤)

(q2) 1% Belle II

f
B!⇡(q2) 2% Belle II

f
⇤b!p/⇤c(q2) 2% LHCb

FCNC B physics f
B!K(q2) 2% Belle II, LHCb, ATLAS, CMS

f
B!K⇤

(q2) 10%* Belle II, LHCb, ATLAS, CMS

f
⇤b!⇤(q2) 2% LHCb

�MB(s)
5%* Belle II, LHCb, BaBar

D physics f
D!⇡,K(q2) 1% Belle II, BES III

K physics f
K!⇡(0) 0.1% First-row CKM unitarity

�MK 20%* KTeV, NA48

✏
0
/✏ 15% KTeV, NA48

K ! ⇡⌫⌫̄ 3% NA62, K0T0

Nucleon Nucleon g
u�d
A 1%* Neutron lifetime puzzle

matrix Nucleon g
u�d
T 1% UCNB, Nab

elements Nucleon g
u�d
S 3% UCNB, Nab

�⇡N , �s 5% Mu2e, LZ, CDMS

Nucleon rE , rA 5% DUNE, MicroBooNE, NOvA, T2K

Nucleon FA(q2) 8% DUNE, MicroBooNE, NOvA, T2K

Nucleon tensor 20% DUNE, MicroBooNE, NOvA, T2K

Nucleon PDFs 12%* ATLAS, CMS, DUNE, EIC expts

Proton decay 10% DUNE, HyperK

nn ! pp 50%* EXO, other 0⌫�� experiments

Nucleon EDM 10%* Neutron, proton EDM experiments

gA,T,S , 1 < A  4 20%* All neutrino, DM, EDM, . . .

Higgs ↵s(mZ) 0.3% ATLAS, CMS, FCC, ILC

+ Light spectrum NA ATLAS, CMS

BSM Anom. dim. NA ATLAS, CMS

Composite DM NA LZ, CDMS

Susy NA ATLAS, CMS

Spectroscopy XY Z NA Belle (II), LHCb, BaBar, CDF, D0

Pc NA LHCb

exotic light hadrons NA BES III, CLAS, COMPASS, GlueX

Heavy-ion collisions QCD phase transition NA (s)PHENIX, ALICE, ATLAS, CMS

Ensemble generation Everything: no lattice QCD without multiple sets of gauge field
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Multi-nucleon

Kronfeld at al, USQCD Snowmass whitepaper (2022).
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FIG. 5. The value of eL1,A as a function of L for the 1
S0 !

3
S1 transition obtained from synthetic data

with various combinations of �E = � eE and �� values. The gray horizontal band denotes the experimental
value, whereas the colored bands indicate mid-68% uncertainty on extracted L1,A for the ground-state to
ground-state (purple) and first excited-state to first excited-state (green) transitions. Note the smaller range
of the eL1,A-axes in the most-left plots compared to the rest. Selected numerical values associated with this
figure are provided in Appendix A.

coming LQCD calculations at the physical pion mass, but for larger volumes with L & 14 fm, the
constraints from the first excited-state to the first excited-state transition become comparable or
more precise. The reverse trend in uncertainties as a function of volume between the two cases is a
consequence of di↵erent behavior of the LL residue functions near negative and positive CM ener-
gies, as illustrated in Fig. 3. One cautionary note is the loss of accuracy in using the e↵ective-range
expansion and the associated LO and NLO NN scattering amplitudes in the pionless EFT near the
first excited-state energies. However, at large volume where the eL1,A constraints from excited-state
transition become more precise, the FV energies tend to their asymptotic value of zero and are
therefore near or within the t-channel cut. On the other hand, at such large volumes, the density
of states in the spectrum increases, and the identification of excited states with current methods
may present a challenge. Variational techniques such as those developed in Refs. [109–111] will
likely constrain the lowest-lying levels with comparable precision to the ground state.

IV. SENSITIVITY ANALYSIS FOR g
NN

⌫

In the light neutrino exchange model of the low-energy nn ! ppe
�
e
� decay, there exists an

undetermined LEC, gNN
⌫ , at the LO the pionless EFT, which is introduced to absorb the UV scale

dependence of the amplitude through renormalization group [38–40]. The Lagrangian density
corresponding to this short-distance contribution consists of a four-nucleon-two-electron contact
interaction:

L
�L=2

N =

✓
4VudGF

2
p
2

◆2

m�� g
NN
⌫

⇥
eLC ē

T
L

⇤ h
(NT

P�N)†NT
P+N)

i
+H.c. (23)
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FIG. 8. The value of egNN

⌫
obtained from the synthetic data is plotted against L for di↵erent combinations

of ��� and �E . The gray band denotes the uncertainty in the value of egNN

⌫
from Eq. (24) from the indirect

determination of Ref. [41]. The corresponding central value is used to obtain the expected values of T (M)
L

,
which enables this sensitivity analysis. The purple band is the mid-68% uncertainty band corresponding
to the sample sets with uncorrelated fluctuations. Selected numerical values associated with this figure are
provided in Appendix A.

states, as outlined in Sec. II B. In this section, we investigate the uncertainty on egNN
⌫ from the

precision levels with which these LQCD inputs are obtained in future LQCD calculations at the
physical quark masses.

The expected value of E0 for a given volume is calculated using Lüscher’s quantization condition
in Eq. (9) and NN phase shifts in the 1

S0 channel obtained from Ref. [104]. This expected value
of E0 and the central value of the constraint on egNN

⌫ given in Eq. (24) are then used to obtain

an estimate on the expected value of T (M)

L with the use of Eqs. (28) and (30). Note that even

though the expected value of T (M)

L from Eqs. (26)-(30) is dependent on m�� , the mean value and
the uncertainty on egNN

⌫ obtained from synthetic data using Eq. (28) is independent of m�� .

The percent precision on E0 (and E1) is denoted by �E , whereas the percent precision on

T
(M)

L is denoted by ��� . Similar to Sec. III B, the uncertainty on egNN
⌫ is taken as the mid-68%

of the ensemble of egNN
⌫ values obtained from synthetic data that incorporates uncertainties on

E0(1) and T
(M)

L as Gaussian fluctuations. The precision levels, �E and ��� , are incorporated in
this synthetic data by making the standard deviation of the fluctuations equal to the expected
values of the quantities multiplied by the corresponding percent precision. The scattering length
and e↵ective range in the 1

S0 channel are obtained by solving Lüscher’s quantization condition in
Eq. (9) for the generated ensembles of the ground- and the first excited-state energies, as outlined
in sec. II B.

The egNN
⌫ values obtained for various combinations of��� and�E are plotted against L in Fig. 8.

The LQCD constraints on egNN
⌫ are almost always more precise than the constraint of Ref. [41]

for input uncertainties below ⇠ 10% level, which indicates that future LQCD calculations can
confidently improve the current constraint, especially for smaller volumes, provided that ��� and
�E are a few percents. This situation is more promising than the case of L1,A, where (sub)precent-

Need more resource assessments and sensitivity analysis using synthetic data for nuclear matrix elements.

Leading-order 
two-nucleon 
correlated axial 
coupling

Leading-order
 coupling 

with light 
Majorana 
neutrinos

0νββ

ZD, Kadam, Phys. Rev. 
D 105 (2022) 9, 094502.

Kronfeld at al, USQCD Snowmass whitepaper (2022).



Three features make lattice QCD calculations of nuclei hard:

i) The complexity of systems grows rapidly with the number of quarks.

ii) Excitation energies of nuclei are much smaller than the QCD scale.

iii) There is a severe signal-to-noise degradation.

Detmold and Orginos, Phys. Rev. 
D 87, 114512 (2013).

See also: Detmold and Savage, 
Phys.Rev.D82 014511 (2010).
Doi and Endres, Comput. Phys. 
Commun. 184 (2013) 117.

Paris (1984) and Lepage (1989). Wagman and Savage, Phys. Rev. D 96, 114508 (2017).
Wagman and Savage, arXiv:1704.07356 [hep-lat].

Beane at al (NPLQCD), Phys.Rev.D79 114502 (2009).
Beane, Detmold, Orginos, Savage, Prog. Part. Nucl. Phys. 66 (2011).
Junnakar and Walker-Loud, Phys.Rev. D87 (2013) 114510.
Briceno, Dudek and Young, Rev. Mod. Phys. 90 025001.



Complexities of quark-level 
interpolating fields

Complexities of 
quark contractions

i) The complexity of systems grows rapidly with the number of quarks.
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then, ignoring the detailed flavour structure, the total number of non-vanishing terms in the above sum is

N !

(N � nq)!
. (2)

However, many of these terms correspond to permutations of the quark fields, and the total number of unique terms
(terms that are not a permutation of any other term) is

N !

nq!(N � nq)!
. (3)

For a generic spatial structure of the interpolating field, N corresponds to the total number of quark degrees of freedom
on a time-slice (N = 12L3, where L is the spatial dimension of the lattice) and one may be discouraged by the feasibility
of the task of building quark level nuclear interpolating fields. However, a number of simplifying factors are omitted in
the above discussion. As we consider interpolating fields with definite transformation properties under the symmetries
of QCD, large numbers of terms in the nuclear interpolating field vanish. The first major reduction comes from the
fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w

a1,a2···anq

h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that

the tensor w
a1,a2···anq

h is totally anti-symmetric, we can introduce the reduced weights w̃
(a1,a2···anq ),k

h which are the
minimal set of non-zero numbers required to completely describe the interpolating field. The nq-plet (a1, a2 · · · anq ),
is an ordered list of indices that represents a class of terms in Eq. 1 that are all permutations of each other. The
index k on the reduced weights enumerates the number of classes that the tensor w

a1,a2···anq

h decomposes into. With
these reduced weights, Eq. 1 can be re-written as

N̄
h =

NwX

k=1

w̃
(a1,a2···anq ),k

h

X

i

✏i1,i2,··· ,inq q̄(ai1)q̄(ai2) · · · q̄(ainq
) , (4)

where Nw is the total number of reduced weights, i represents the nq-plet (i1, i2 · · · inq ) and ✏i1,i2,··· ,inq is a totally
anti-symmetric tensor of rank nq with

✏1,2,3,4,··· ,nq = 1 .

The above expression is the simplest form of the quark-level nuclear interpolating field and is completely described
by the reduced weights. As an example, using a single point spatial wave function, the numbers of terms contained
in the simplest interpolating fields for the proton, deuteron, 3He and 4He, are Nw = 9, 21, 9, and 1, respectively.

A. Hadronic Interpolating Fields

Having now written down a general nuclear interpolating field with quantum numbers h, we need to calculate the

reduced weights w̃
(a1,a2···anq ),k

h in an e�cient manner. In principle, this can be achieved directly from quark fields
by imposing the desired transformation properties. However, in certain cases, it is advantageous to proceed by first
constructing hadronic interpolating fields from which the quark interpolating fields are derived.

The hadronic interpolating fields assume a form analogous to that of the quark interpolating fields. The baryons
that make up the nucleus are also fermions, hence the general structure outlined above can be directly transcribed
here. In terms of baryons, a nuclear interpolating field of a nucleus of atomic number A is

N̄
h =

MwX

k=1

W̃ (b1,b2···bA)
h

X

i

✏i1,i2,··· ,iAB̄(bi1)B̄(bi2) · · · B̄(biA) , (5)

where Mw is the number of hadronic reduced weights W̃ (b1,b2···bA)
h , B(bi) are baryon interpolating fields and the bi are

generic indices that includes parity, angular momentum, isospin, strangeness, and spatial indices. Unlike the quark

1
For simplicity, we refer to the irreducible representation of the lattice symmetry group as angular momentum.

which naively has                        terms! But many of the terms are zero by symmetries.

All possibilities for quark quantum 
numbers in the interpolating operator

A quark-level nuclear interpolating field:
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We consider the problem of calculating the large number of Wick contractions necessary to com-
pute states with the quantum numbers of many baryons in lattice QCD. We consider a constructive
approach and a determinant-based approach and show that these methods allow the required con-
tractions to be performed in computationally manageable amount of time for certain choices of
interpolating operators. Examples of correlation functions computed using these techniques are
shown for the quantum numbers of the light nuclei, 4He, 8Be, 12C, 16O and 28Si.

I. INTRODUCTION

The ab initio approach to nuclear physics from the underlying theory of the strong interactions, Quantum Chro-
modynamics (QCD), is hampered by the many body nature of the nuclear problem. In principle, QCD and the
electroweak interactions give rise to all the rich and complex phenomena of nuclear physics, yet it is only recently
that the first QCD studies of multi-baryon systems have appeared [1–8]. The reason for this is twofold. Firstly, the
Monte-Carlo evaluation of correlation functions of multi-baryon systems converges slowly, requiring a large number
of measurements before the necessary precision is reached (this issue will not be addressed here). Secondly, systems
with the quantum numbers of many nucleons and hyperons are complex many-body systems with complicated spectra
and there are a multitude of physically relevant states that can be studied in QCD. Even for a given set of quantum
numbers, additional complexity appears at the quark level; the number of Wick contractions required to construct
systems for large atomic number grows factorially, scaling as nu!nd!ns! where nu,d,s are the numbers of up, down,
and strange quarks required to construct the quantum numbers of the state in question. In many situations, this is
a naive counting as there are many cancellations and contributions that are identical. However, the a priori identi-
fication of these simplifications is a non-trivial task. In addition to the problem of Wick contractions, the number
of terms in the interpolating fields of multi-nucleon systems also typically grows exponentially with the size of the
system. This potentially more serious problem is similar in nature to the problem of the exponential growth of nuclear
wave-functions faced in nuclear structure calculations where phenomenological potential models describing the low
energy nucleon-nucleon interactions are used.

In this paper, we present a systematic method for the construction of nuclear interpolating fields for multi-baryon
systems in lattice QCD (LQCD) (see Ref. [9] for related work). We demonstrate that the Grassmannian nature of the
quark fields can be used to our advantage, in some cases resulting in particularly simple nuclear interpolating fields.
In addition, we present two approaches that ameliorate the cost of contractions, the most e�cient of which scales
only polynomially in the number of quarks involved in the contraction. Using these methods we compute LQCD
correlation functions with the quantum numbers of the light nuclei, 4He, 8Be, 12C, 16O and 28Si, demonstrating that
correlation functions relevant to the study of nuclei in QCD can be constructed.

II. NUCLEAR INTERPOLATING FIELDS

In order to calculate nuclear correlation functions, we first need to construct quark level nuclear interpolating fields.
This is, in principle, straightforward and, in practice, it resembles the construction of quark model wave-functions for
baryons [10]. A general quark-level nuclear interpolating field with atomic number A containing nq = 3A quarks has
the form

N̄
h =

X

a

w
a1,a2···anq

h q̄(a1)q̄(a2) · · · q̄(anq ) , (1)

where the q̄ai are the quark fields, the ai are generic indices which combine the colour, spinor, flavour, and spatial
indices of the quark and a is a compound index representing the nq-plet a1, a2 · · · anq . Given that calculations are
performed on a discrete lattice, the spatial degrees of freedom are finite and countable, and as a result we can use
an integer index to describe them. Here the quark fields are all at the same time t. The index h on the nuclear
interpolating field is a set of quantum numbers that identify the nuclear state, including its momentum, angular
momentum, isospin and strangeness. The Grassmannian nature of the quark field dictates that the tensor w

a1,a2···anq

h
is totally antisymmetric under the exchange of any two indices. If the indices ai can have a total of N possible values,
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Example: deuteron at a single site

924 ! 21Detmold and Orginos (2013), 
Endres and Doi (2013).

Complexities of quark-level 
interpolating fields



Naively the number of quark 
contractions for a nucleus goes as:

How bad is this?


Example: Consider radium-226 isotope. 
The number of contractions required is ~ 1.4209⇥ 101425

(2Np +Nn)! (Np + 2Nn)!

Complexities of 
quark contractions



Complexities of 
quark contractions

BARYON BLOCKS

An example of a more efficient algorithm:

6

consider them further. The procedure described has been used to perform the contractions needed for the large class
of interpolating fields considered in the study of the spectrum of hyper-nuclei up to A = 5 in Ref. [8, 23].

For large numbers of baryons (A > 8 for protons and neutrons alone), it is necessary to use multiple source locations
because of the Pauli exclusion principle. In this case, the generalised blocks in Eq. 10 can be used with the algorithm
presented above.

C. Scaling

From the above description, it is clear that this algorithm will in general scale as

Mw ·Nw ·
(3A)!

(3!)A
, (11)

where A is the atomic number and Mw and Nw are the number of terms in the sink and source interpolating fields
respectively. In addition, the fact that the hadron blocks are completely anti-symmetric under all quark exchanges
has been taken into account. If we also take into account that the strong interactions are flavour-blind and consider
only octet baryon building blocks, this reduces to

Mw ·Nw
nu!nd!ns!

2A�n⌃0�n⇤
, (12)

where n⌃0 and n⇤ are the number of ⌃0 and ⇤ baryons in the hadronic interpolating field and the factor in the
denominator arises because all octet baryons have two quarks of the same flavour except from the ⌃0 and ⇤. This
algorithm can be e�ciently implemented and is computationally feasible for small systems, A . 10. As an example
of this method, a 4He two point correlation function can be computed in ⇠ 0.8 seconds per time slice on a single core
of a Dual Core AMD Opteron 285 processor.

IV. MULTI-BARYON CONTRACTIONS WITH DETERMINANTS

For larger atomic number, A & 10, alternative methods are required to perform the contractions in a computationally
feasible manner. It is straightforward to see how this can be done by examining the two point functions above and
making use of Wick’s theorem [24]. The numerator of Eq. 8 before the integration over the gauge fields is performed
is given by

⇥
N

h
1 (t)N̄

h
2 (0)

⇤
U

=

Z
DqDq̄ e�SQCD[U ]

N 0
wX

k0=1

NwX

k=1

w̃
0(a0

1,a
0
2···a

0
nq

),k0

h w̃
(a1,a2···anq ),k

h ⇥

X

j

X

i

✏j1,j2,··· ,jnq ✏i1,i2,··· ,inq q(a0jnq
) · · · q(a0j2)q(a

0
j1)⇥ q̄(ai1)q̄(ai2) · · · q̄(ainq

) , (13)

where the primed and unprimed indices are associated with the sink and source interpolating fields, respectively and
are composite colour, spinor, flavour and spatial indices and [. . .]U indicates the value of the enclosed expression on
a fixed gauge field. The Grassmann integral over quark fields can now be performed, resulting in the replacement of
the qq pairs by elements of the quark propagator.

⇥
N

h
1 (t)N̄

h
2 (0)

⇤
U

= e�Seff [U ]

N 0
wX

k0=1

NwX

k=1

w̃
0(a0

1,a
0
2···a

0
nq

),k0

h w̃
(a1,a2···anq ),k

h ⇥

X

j

X

i

✏j1,j2,··· ,jnq ✏i1,i2,··· ,inqS(a0j1 ; ai1)S(a
0
j2 ; ai2) · · ·S(a

0
jnq

; ainq
) , (14)

where Seff [U ] denotes the pure gauge part of the QCD action together with the logarithm of the determinant of the
Dirac matrix. The above expression of Wick’s theorem, can be written in terms of the determinant of a matrix G
whose matrix elements are given by

G(a0;a)j,i =

⇢
S(a0j ; ai) for a0j 2 a0 and ai 2 a
�a0

j ,ai
otherwise , (15)

The new scaling is:

Number of terms 
in the source

Number of terms 
in the sink
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FIG. 3: Correlation functions for nuclear systems, 4He, 8Be, 12C, 16O and 28Si. In each row, correlators based on both
smeared-point (SP) and smeared-smeared (SS) quark propagators are shown.
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smeared-point (SP) and smeared-smeared (SS) quark propagators are shown.

Detmold and Orginos (2013).



Nuclear excitations of two pear-shaped 
nuclei (radium and radon)

Gaffney et al., Nature 497, 199–204 (013).

Kulikov, Dmitry A. et al., Central Eur.J.Phys. 11 (2013) .

Nucleon excitations

Bd ⇡ 2 MeV

ii) Excitation energies of nuclei are much smaller than the QCD scale.

Getting radium directly from QCD will remain challenging for a long time! One should first 
compute A = 2, 3, 4 systems well. This is till not that easy:                     !



The small excitation gaps require more sophisticated techniques to discern the spectrum, such as variational 
approaches with a large and diverse operator set. Example: Deuteron channel at  MeV.mπ ≈ 800
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FIG. 34. Comparison of the I = 1 (left) and I = 0 (right) two-nucleon S-wave phase shifts
determined in this work with previous calculations using [D, H] correlation functions from the
NPLQCD [18] and CalLat collaborations [25], previous calculations using [D, D] correlation func-
tions in Ref. [26], and those using variational methods with sets of two dibaryon interpolating
operators in several boosted frames in Ref. [28].

LQCD calculations of two-nucleon systems with similar quark masses, various lattice actions,
and di↵erent interpolating-operator sets. Results from previous LQCD calculations using
[D,H] correlation functions from Refs. [18, 25] as well as results using [D,D] correlation func-
tions in several boosted frames from Ref. [26] and GEVP results using sets of two dibaryon
interpolating operators in several boosted frames from Ref. [28] are compared in Fig. 34

to the GEVP results from this work using the S(2,1,A+
1 )

0
and S(2,0,T+

1 )

0
interpolating-operator

sets. Discrepancies of (2-3)� in k cot �1S0 and k cot �3S1 are seen between results associated
with the ground state on this lattice volume and corresponding results from Refs. [18, 25].
Conversely, there is agreement at the 1� level in k cot �1S0 and k cot �3S1 between the ground
state results of this work and the corresponding ground-state results of Ref. [28], as well as
1� agreement with the more statistically uncertain results for k cot �1S0 of Ref. [26]. This

agreement is consistent with the observations that subsets of S(2,1,A+
1 )

0
and S(2,0,T+

1 )

0
only in-

cluding s = 0 dibaryon operators lead to consistent ground-state energy results with results

obtained using the full sets S(2,1,A+
1 )

0
and S(2,0,T+

1 )

0
, at the statistical precision of this work.

Higher-energy phase shifts show consistency between the results of this work and that of
Refs. [26, 28] at (1-2)�.

Although a reliable way to determine whether a bound state is present is by determining
the volume dependence of the FV energy spectrum and finding a ground-state energy below
2MN in the infinite-volume limit, statements about the likelihood of a state being bound
or unbound can be made using results with a single lattice volume by invoking the analytic
structure of the constrained amplitudes. The ground-state FV energy shift is negative at
1� in the I = 1 and at 2� in the I = 0 channels, which indicates attractive interactions
at very low energies in both channels, which is a necessary but not su�cient condition for
a bound state to be present. Another useful criterion is that k cot � should be negative
(positive) for a bound (unbound) state in su�ciently large volumes [37, 153], which given
MN and the lattice volume used here corresponds to a FV energy shift below (above) the
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NPLQCD 21

Thinking positive
Correlation-function matrices for an interpolator set including both local “hexaquark” 

and bilocal “dibaryon” operators generalize previous interpolating operator choices

Although application of variational methods to multi-nucleon systems has long been 
advocated, it has only recently become computationally feasible through methods 
such as distillation and propagator sparsening, as well as code optimization

Baghdadi et al, arXiv:2005.04091

Peardon et al PRD 80 (2009)

Morningstar et al PRD 83 (2011)

Detmold, MW et al, arXiv:1908.07050
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FIG. 21. Compilations of the GEVP e↵ective FV energy shifts shown in Figs. 18-20 corresponding
to energy levels below the single-nucleon first excited state and comparisons to non-interacting two-
nucleon FV energy shifts (dashed lines) as in Fig. 9. The left (right) figures show the GEVP energy
levels dominantly overlapping with interpolating operators with �` = A+

1 associated with S-wave
states in the infinite-volume limit (�` 2 {E+, T+

1 , T+
2 } associated with D-wave and higher-partial

wave states in the infinite-volume limit). The multiplicities of approximately degenerate energy

levels are equal to the multiplicities N
(0,T+

1 )
s tabulated in Table III for levels near the non-interacting

levels associated with the s 2 {0, . . . , 6} shells.

correlation-function matrix determinant is resolved from zero). The largest non-degenerate
interpolating-operator sets constructed in this way include 42 interpolating operators.

One choice of a non-degenerate set of 42 interpolating operators includes all 20 D
(2,0,T+

1 )
skg

interpolating operators with each smearing required to describe non-interacting nucleons

with relative momentum less than
p
8
�
2⇡
L

�
as well as the twoH

(2,0,T+
1 )

g interpolating operators
corresponding to thin and wide smearing widths,

S(2,0,T+
1 )

0
=

⇢
D

(2,0,T+
1 )

skg , H(2,0,T+
1 )

g | s 2 {0, . . . , 6}, k 2 {1, . . . ,N
(0,T+

1 )
s }, g 2 {T,W}

�
, (69)

where the multiplicities of dibaryon operators with s-shell relative momenta N
(0,T+

1 )
s are

shown in Table III. Results for GEVP e↵ective FV energy shifts using S(2,0,T+
1 )

0
and the

corresponding fit results for �E
(2,0,T+

1 ,S0)
n obtained using the same fitting methods as before

are shown for the levels n 2 {0, . . . , 20} in Figs. 18-20. The low-energy GEVP energy levels

A symmetric correlation function of many types of 
operators at source and sink… leads to identification of upper bounds on 

finite-volume eigenenergies…

which gives access to low-energy scattering phase shifts.

Graphic by M. Wagman

Amarasinghe et al [NPLQCD], 
arXiv:2108.10835 [hep-lat].
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The ground-state of the variance correlator is three 
pions and not two nucleons:

Parisi (1984) and Lepage (1989).

The origin of noise
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iii) THERE IS A SEVERE SIGNAL-TO-NOISE DEGRADATION.

THE GROUND-SATATE OF THE 
VARIANCE CORRELATOR IS 3 
PIONS AND NOT TWO NUCLEONS:

Parisi (1984) and Lepage (1989).

Beane et al, NPLQCD 
collaboration (2009).
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Wagman and Savage (2016,2017).

Beane et al 
(NPLQCD) (2009).

iii) There is a severe signal-to-noise degradation.

Similar arguments explain why boosted hadron 
correlation functions are noisy too.



Ideas to combat signal-to-noise problem include:

Endres and Detmold (2014).

iii) Exploiting decorrelation between spacetime 
subvolumes (multilevel integrals and domain 
decomposition)

iv) Path integral contour deformations for observables

i) Enhancing the signal by operator-overlap 
optimizations (heuristically or systematically)

12

Phase Reweighting

Exponent of StN problem set by number of 
steps in random walk of the phase 
included in measurement

G✓(t,�t) =
D
Ci(t)e

�i✓i(t��t)
E

G✓(t, t) = hCi(t)i = G(t)

StN ⇠ e�(mN� 3
2m⇡)�t

“Phase-reweighted correlation function” 
measures fixed-length phase differences

Reduces to standard correlation function in limit           �t ! t

MW and Savage, arXiv:1704.07356
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“Phase-reweighted correlation function” 
measures fixed-length phase differences

Reduces to standard correlation function in limit           �t ! t

MW and Savage, arXiv:1704.07356

Savage and Wagman (2016-2017).

Ce, Giusti and Schaefer (2016-2018).

Detmold, Kanwar, Lamm, Wagman, Warrington (2021).

3

The Golden Window
LQCD calculations rely on a “golden window” where excited state 

contamination is small but StN still manageable

Excited 
states

Golden 
window

Noise 
region

Beane et al (NPLQCD). Phys. Rev. D79 (2009)
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... ⌦⇤
l

Figure 2: Domain decomposition of the lattice in thick time-slices, with the sink and the source
of the quark propagator belonging to blocks distant in time.

By taking the bottom-left off-diagonal element in Eq. (B.10), one arrives at

D�1
�0

(y, x) = �

X

w1 2 @⌦l

w2 2 @⌦⇤
l

D�1
⌦⇤

l
(y, w1)D@⌦⇤

l
(w1, w2)D

�1
�0

(w2, x) . (4.9)

Step 3: Since w2 and x in Eq. (4.9) are both at least at a distance � from the exterior
boundary of ⌦l+1, one can replace

D�1
�0

(w2, x) = D�1
⌦l+1

(w2, x) + . . . (4.10)

and arrive to

D�1
�0

(y, x) = �

X

w1 2 @⌦l

w2 2 @⌦⇤
l

D�1
⌦⇤

l
(y, w1)D⇤l,l�1(w1, w2)D

�1
⌦l+1

(w2, x) + . . . . (4.11)

The boundary operator D@⌦⇤
l

has been replaced by D⇤l,l�1 since this is the only compo-
nent acting on fields in ⌦⇤

l .

By iterating (m � l) times steps 2 and 3, it is easy to show that one can define an
approximated propagator

S(f)(y, x) = (�1)m�l
hm+1Y

i=l

D�1
⌦⇤

i
D⇤i,i�1

i
(y, ·)D�1

⌦m+2
(·, x) (4.12)

which satisfies �5-hermiticity. Since in each step the (inverse) matrix factors have been
approximated so that the source and the sink coordinates are at least at a distance �
from the Dirichlet boundary conditions, we expect

tr{(S(y, x)� S(f)(y, x)) (S(y, x)† � S(f)(y, x)†)}1/2
⇠ e�M⇡� . (4.13)

7

2

proving sign/StN problems is only explored here for pure
gauge theory.

The deformed observable method introduced in
Ref. [48] relates path integrals over deformed contours
to path integrals written in terms of modified observ-
ables on undeformed contours, enabling improvement in
the StN of observables without the need to modify MC
sampling. We apply the method here to calculations of
Wilson loops in SU(2) and SU(3) gauge theory, in which
Wilson loops are known to have an exponentially severe
StN problem and have been used to study other StN im-
provement methods [53]. Calculations are performed in
(1 + 1)D as a proof of concept, as it is possible to com-
pare with exact StN results derived analytically and to
use specialized approaches for e�cient Monte Carlo en-
semble generation for (1 + 1)D gauge theories. Results
are obtained for a range of Wilson loop areas and lattice
spacings including areas of up to 64 lattice units at the
finest lattice spacing. The variances of Wilson loops with
largest areas are reduced by factors of 103–104, demon-
strating that deformed observables can dramatically im-
prove StN problems in SU(N) lattice gauge theory. The
linear scaling with spacetime volume of these contour de-
formations suggests that it should be computationally
feasible to explore the application of analogous contour
deformations to (3 + 1)D lattice gauge theory in future
work.

The remainder of this paper is organized as follows.
Sec. II describes our approach to contour deformations
for SU(N) variables, including a family of complex man-
ifolds for integration over sets of SU(N) variables, and
reviews the deformed observables method introduced in
Ref. [48]. Sec. III presents analytical results for expec-
tation values and variances of observables in (1 + 1)D
SU(N) lattice gauge theory. Results for MC calculations
of deformed observables for Wilson loops are presented
for SU(2) gauge theory in Sec. IV and for SU(3) gauge
theory in Sec. V. A summary of results and consideration
of future work is found in Sec. VI.

II. GENERAL FORMALISM

Cauchy’s integral theorem implies that the contour of
a complex line integral can be deformed without chang-
ing the integral value if the integrand is holomorphic in
the intervening region and the endpoints are held fixed.1

When multidimensional integration is performed, the full
theorem can be generalized if the integral is describable
as iterated complex line integrals or by a technical ex-
tension to the full multivariate setting [54]. For the pur-
pose of contour deformations, however, only a weaker
form of the theorem (equivalent to Stokes’ theorem) is

1
For periodic functions this condition on the endpoints can be

relaxed, as discussed in Sec. II A.

✓

invalid e✓(✓)

valid e✓(✓)

�

valid e�(�)

valid e�(�)

identified

FIG. 1. Left: schematic depiction of valid and invalid contour
deformations, defined by the mapping e✓(✓) from base coordi-
nates to the manifold, when the original domain is a finite in-
terval. Right: schematic depiction of additional allowed defor-
mations (shifts) when endpoints are identified; these shifts are
applicable to U(1) variables or azimuthal angles � in SU(N)
manifolds.

required. Specifically, a contour deformation from man-
ifold MA to MB leaves the integral value unchanged if
MA[MB bounds a region in which the integrand is holo-
morphic; see Ref. [47] for a simple proof. To implement
such contour deformations and confirm holomorphy of an
integrand throughout the relevant region of configuration
space, a coordinate parameterization is useful. We dis-
cuss such parameterizations and contour deformation for
SU(N) groups and SU(N) gauge theory in the following
sections.

A. Contour deformations of angular parameters

A general formalism for applying path integral con-
tour deformations to SU(N) group integrals can be ob-
tained by using manifold coordinates that map subsets
of RN2�1 to SU(N). For any N , the group manifold
can be given explicit global coordinates using N

2
� 1

angular variables [55]. These variables can be divided
into azimuthal angles �1, . . . ,�J 2 [0, 2⇡] and zenith an-
gles ✓1, . . . , ✓K 2 [0,⇡/2], where J = (N2 + N � 2)/2
and K = (N2

� N)/2.2 The azimuthal angles are peri-
odic, such that �i = 0 is identified with �i = 2⇡, while
the zenith angles have distinct endpoints. We define the
combined coordinate ⌦ ⌘ (�1, . . . ,�J , ✓1, . . . , ✓K).

A generic integral over group-valued variable U 2

SU(N) can be written as

I =

Z
dU f(U), (1)

where the Haar measure dU is defined to be the unique
measure that satisfies d(V U) = d(UV ) = dU for V 2

2
This is not the only possible assignment of angular coordinates to

the manifold. For example, Appendix B explores an alternative

parameterization for SU(2).

ii) A phase reweighting method to allow extrapolations 
by systematically changing the noise contribution
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al, arXiv:2202.05838 [hep-lat].

Machine Learning for 
Lattice Field Theory
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and LFT research
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Requirements



APPLICATIONS OF ML ON LATTICE FIELD THEORY TO DATE

e.g., Wetzel et al, Phys. 
Rev. B 96, 184410 (2017).

i) Classifying lattice field theory phases

ii) Estimating observables

iii) Reconstructing spectral functions

iv) Gauge ensemble genenration 
and action parameter regression

Ensemble generation
Finding improved Markov chain updates (smaller autocorrelation time)  
 
 
 
 
 
 

Directly sampling configurations

[Wang Phys. Rev. E 96, 051301]
[Huang and Wang, Phys. Rev. B 95, 035105]
[Song+ 1706.07561, NeurIPS 2017]
[Tanaka and Tomiya, 1712.03893]

[Liu+ Phys. Rev. B 95, 241104 (2017)]
“Self-learning Monte Carlo”

+ many more

[Foreman+ 2105.03418]

[Köhler+ 1910.00753]

[Pawlowski and Urban, ML: Sci. and Tech. 1 (2020) 045011]

…

[Carrasquilla+ Nature Mach. Int. 1 (2019) 155]
…

+ “Flow-based MCMC”: more tomorrow
HMC GAN-overrelaxation

Action parameter regression
• Fully-connected network to predict 

(measured masses) → (action parameters)


• Accurate  tuningc = 1

[Shanahan+ Phys. Rev. D 97, 094506 (2018)]

[Hudspith and Mohler 2112.01997]

• Regression from raw-configs to action


• Gauge-symmetry important to include in networks!

…

Spectral function reconstruction
Euclidean-time Green’s functions  spectral densities  
(i.e. inverse Källén–Lehmann)


Neural-network parameterization of 

→ ρ(ω)

ρ(ω)
[Kades+ Phys. Rev. D 102, 096001 (2020)]

[Horak+ Phys.Rev.D 105, 036014 (2022)][Chen+ 2110.13521]

[Wang+ 2112.06206]
[Shi+ 2201.02564]

[Offler+ 1912.12900]

Classifying lattice phases
Many works using both regressive methods and generative methods.

[Bachtis+ Phys. Rev. E 102, 033303 (2020)]

[Boyda+ Phys. Rev. D 103, 014509 (2021)]
[Palermo+ PoS(LATTICE2021)030]

[Tan+ 2103.10846]

[Li+ 1703.02369]

[Wetzel+ Phys. Rev. B 96, 184410 (2017)]

[Alexandrou+ Eur. Phys. J. B (2020) 93: 226]

[Bluecher+ Phys. Rev. D 101, 094507 (2020)]

[Yau+ 2006.15021]

[Zhou+ Phys. Rev. D 100, 011501 (2019)]

+ many more

SU(2) gauge theory deconfinement transition

Scalar field theory transition 
with chemical potential

And many more references e.g., in K. Kanwar’s EuroPLEX 2022 Lectures 
and a Snowmass whitepaper by Boyda et al, arXiv:2202.05838 [hep-lat]. 

ML estimators for observables
Thermodynamic observables 

Predicting observables from raw lattices


 
 
 
 
 

Cross-observable estimates

[Nicoli+ Phys. Rev. Lett. 126, 032001 (2021)]

[Favoni+ Phys.Rev.Lett. 128 (2022) 3, 032003]
[Matsumoto+ 1909.06238]

[Yoon+ Phys. Rev. D 100, 014504 (2019)]

[Bulusu+ Phys. Rev. D 104, 074504 (2021)]
Also work on gauge symmetries in NNs

[Zhang+ Phys. Rev. D 101, 034516 (2020)]

ML estimators for observables
Thermodynamic observables 

Predicting observables from raw lattices


 
 
 
 
 

Cross-observable estimates

[Nicoli+ Phys. Rev. Lett. 126, 032001 (2021)]

[Favoni+ Phys.Rev.Lett. 128 (2022) 3, 032003]
[Matsumoto+ 1909.06238]

[Yoon+ Phys. Rev. D 100, 014504 (2019)]

[Bulusu+ Phys. Rev. D 104, 074504 (2021)]
Also work on gauge symmetries in NNs

[Zhang+ Phys. Rev. D 101, 034516 (2020)]

e.g., Yoon+ Phys. Rev. 
D 100, 014504 (2019).

e.g., Kades+ Phys. Rev. 
D 102, 096001 (2020).

e.g., Shanahan+ Phys. Rev. D 97, 
094506 (2018), Pawlowski and Urban, 
ML: Sci. and Tech. 1 (2020) 045011.

Ensemble generation
Finding improved Markov chain updates (smaller autocorrelation time)  
 
 
 
 
 
 

Directly sampling configurations

[Wang Phys. Rev. E 96, 051301]
[Huang and Wang, Phys. Rev. B 95, 035105]
[Song+ 1706.07561, NeurIPS 2017]
[Tanaka and Tomiya, 1712.03893]

[Liu+ Phys. Rev. B 95, 241104 (2017)]
“Self-learning Monte Carlo”

+ many more

[Foreman+ 2105.03418]

[Köhler+ 1910.00753]

[Pawlowski and Urban, ML: Sci. and Tech. 1 (2020) 045011]

…

[Carrasquilla+ Nature Mach. Int. 1 (2019) 155]
…

+ “Flow-based MCMC”: more tomorrow
HMC GAN-overrelaxation



CAN WE COMBAT SIGNAL-TO-NOISE AND SIGN PROBLEMS IN MONTE CARLO 
LATTICE QCD SIMULATIONS WITH NEW COMPUTATIONAL PARADIGMS?

towardsdatascience.com https://builtin.com

QUANTUM 
COMPUTING



Bauer, ZD et al, arXiv:2204.03381 [quant-ph].

Physics Drives

Collider 
Phenomenology

Neutrino 
(Astro)physics

Matter in and out 
of Equilibrium

Early Universe 
and Cosmology

Quantum Gravity

MANY INTRACTABLE QUESTIONS IN NUCLEAR AND HIGH ENERGY PHYSICS REMAIN ILLUSIVE…



Bauer, ZD et al, arXiv:2204.03381 [quant-ph].

Quantum Simulation for 
High-Energy Physics

Quantum Ecosystem

Co-design and 
accessibility

Workforce 
development

Strategic 
partnerships

Underlying Simulations

Quantum Field Theory 
Simulations

Effective Field Theory 
Simulations

Physics Drives

Collider 
Phenomenology

Neutrino 
(Astro)physics

Matter in and out 
of Equilibrium

Early Universe 
and Cosmology

Quantum Gravity

Analog Simulators

Digital Computers

NISQ-Era Simulations

Software and compiler

Quantum Simulators

Snowmass 2021



Theory developments

Algorithmic developments

A QUANTUM-SIMULATION-BASED LATTICE FIELD THEORY CAMPAIGN WILL BE 
MULTI PRONG AS HAS BEEN THE CASE WITH THE CONVENTIONAL PROGRAM…

Implementation, benchmark, 
and co-design



Theory developments

How to formulate QCD in the Hamiltonian language?

What are the efficient formulations? Which bases 
will be most optimal toward the continuum limit?

How to preserve the symmetries? How much 
should we care to retain gauge invariance? 

How to quantify systematics such as finite volume, 
discretization, boson truncation, time digitization, etc.?



How do we do state preparation 
and compute observables like 
scattering amplitudes?

Near- and far-term algorithms with 
tight bounded errors and resource 
requirement for gauge theories?

Can given formulation/encoding 
reduce qubit and gate resources?

Can non-Abelian gauge theories 
and higher dimensional theories be 
realized in an analog simulator?

Can we robustly bound the errors in 
the analog simulation? What 
quantities are more robust to errors?

Algorithmic developments



Implementation, benchmark, 
and co-design

Can we co-design dedicated systems for 
gauge-theory simulations?

Can digital and analog ideas be combined 
to facilitate simulations of field theories?

What is the capability limit of 
the hardware for gauge-theory 
simulations so far?

What is the nature of noise in hardware 
and how can it best be mitigated?



time
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Lu, Klco, Lukens, Morris, Bansal, Ekström, Hagen, Papenbrock, 
Weiner, Savage, Lougovski, Phys. Rev. A 100, 012320 (2019)

Martinez, Muschik, Schindler, Nigg, Erhard, Heyl, Hauke, 
Dalmonte, Monz, Zoller, Blatt, Nature 534, 516-519 (2016) Klco, Dumitrescu, McCaskey, Morris, Pooser, Sanz, Solano, 

Lougovski, Savage, Phys. Rev. A 98, 032331 (2018)

IBM, 2 qubits

Trapped ions, 4 qubits

Quantum 
Frequency 

Processor, 8 
fermion sites

DIGITAL EXAMPLES FOR AN ABELIAN 1+1D MODEL
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N = 4, �t = 1

(a)

(b)

Figure 7. Experimental results for N = 4 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The upper plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
lower plot shows its deviation from theory.

delity, rather than qubit number, is the main limitation of
our implementation. E↵orts to overcome such a technical
limitation are well underway [86]. To mitigate the time-
correlated errors, we have applied a symmetry-protection
scheme [29] but found negligible e↵ects in suppressing
the errors, pointing to dominant incoherent and uncorre-
lated noise in the experiment. Incoherent errors can be
mitigated by post-selection of the experimental measure-
ments using symmetry considerations. Better-motivated
and further-tailored schemes for incoherent error mitiga-
tion are desired in future simulations.

An avenue for improving the quality of the simulation
is reducing the gate depth, e.g., by performing gates in
parallel instead of sequentially. In our model, e�i�tĤ

x

,
consisting of only nearest-neighbor interactions, can be

N = 6, �t = 1

(a)

(b)

Figure 8. Experimental results for N = 6 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The left plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
right plot shows its deviation from theory. At t = 4, we reach
the gate-depth limit of the hardware.

applied in a fixed circuit depth of 4 instead of 2N by per-
forming all the X2iX2i+1 terms, then all the X2i+1X2i+2

terms, in parallel. The all-to-all interactions in e
�i�tĤ

ZZ

can be reduced to depth of N instead of N
2 if gates

XiXi+n, for all i and fixed n, are performed in paral-
lel. With trapped ions, parallel operations can be done
either in multi-zone architectures [87, 88], or in linear
chains with advanced control schemes [89].

Alternatively, the gate depth can be reduced by
using M -body Mølmer-Sørensen gates MS(�,M) ⌘

e
�i�

PM
i=1

PM
j=i+1 �̂

X
i �̂

X
j [82–84]. This approach was im-

plemented in Ref. [71] to reduce the number of MS op-
erations in the simulation of the Schwinger model from
O(N2) to O(N). In general, a non-trivial optimization of
both frequency and amplitude modulation of the beams
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limitation are well underway [86]. To mitigate the time-
correlated errors, we have applied a symmetry-protection
scheme [29] but found negligible e↵ects in suppressing
the errors, pointing to dominant incoherent and uncorre-
lated noise in the experiment. Incoherent errors can be
mitigated by post-selection of the experimental measure-
ments using symmetry considerations. Better-motivated
and further-tailored schemes for incoherent error mitiga-
tion are desired in future simulations.

An avenue for improving the quality of the simulation
is reducing the gate depth, e.g., by performing gates in
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Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The left plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
right plot shows its deviation from theory. At t = 4, we reach
the gate-depth limit of the hardware.

applied in a fixed circuit depth of 4 instead of 2N by per-
forming all the X2iX2i+1 terms, then all the X2i+1X2i+2

terms, in parallel. The all-to-all interactions in e
�i�tĤ

ZZ

can be reduced to depth of N instead of N
2 if gates

XiXi+n, for all i and fixed n, are performed in paral-
lel. With trapped ions, parallel operations can be done
either in multi-zone architectures [87, 88], or in linear
chains with advanced control schemes [89].

Alternatively, the gate depth can be reduced by
using M -body Mølmer-Sørensen gates MS(�,M) ⌘

e
�i�

PM
i=1

PM
j=i+1 �̂

X
i �̂

X
j [82–84]. This approach was im-

plemented in Ref. [71] to reduce the number of MS op-
erations in the simulation of the Schwinger model from
O(N2) to O(N). In general, a non-trivial optimization of
both frequency and amplitude modulation of the beams

Trapped ions, 4 qubits

Nguyen, Tran, Zhu, Green, Huerta Alderete, ZD, 
Linke, PRX Quantum 3 (2022) 2, 020324.

Trapped ions, 6 qubits
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The last term in the Hamiltonian corresponds to the
invariant Casimir operator of the theory and represents
color electric field energy stored in the gauge links. Here,
L̂

2

n “ ∞
a L̂

a
nL̂

a
n “ ∞

a R̂
a
nR̂

a
n where L̂a

n and R̂a
n (with

a “ x, y, z) are respectively the left and right color elec-
tric field components on the link n. For a non-Abelian
gauge group, the right and left color electric field are
different and are related via the adjoint representation
R̂a

n “ ∞
bpÛadj

n qabL̂b
n, where pÛadj

n qab “ 2Tr

”
ÛnT̂ aÛ :

nT̂
b
ı
,

T̂ a “ �̂a{2 are the three generators of the SU(2) algebra
and �̂a are the Pauli matrices [38].

Symmetries and non-Abelian physics By virtue
of its gauge invariance, the Hamiltonian in equation (1)
commutes with the local gauge transformation genera-
tors, also called the Gauss’s law operators, and are given
by Ĝa

n ” L̂a
n´R̂a

n´1´Q̂a
n, where the non-Abelian charges

Q̂a
n acting on the site n are defined as

Q̂a
n “

ÿ

ij

�̂i:
n pT̂ aqij �̂j

n, a “ x, y, z. (2)

More precisely, the so-called physical Hilbert space of the
theory is spanned by the eigenstates of the Gauss’s law
operators Ĝa

n. In the following, we choose to work in
the sector with no external charges which is specified by
Ĝn | y “ 0, @n, and in the neutral total charge sector
Q̂a

tot | y “ ∞N
n“1 Q̂

a
n | y “ 0, @a.

Remarkably, the non-Abelian nature of the model al-
lows the existence of gauge invariant singlet states which
are forbidden in the Abelian case due to symmetry con-
straints. To see this, we note that the total color
charges Q̂a

tot “ ∞N
n“1 Q̂

a
n are conserved quantities and

commute with the Hamiltonian. Besides the three non-
Abelian charges, the Hamiltonian also commutes with
the redness and greenness operators defined as R̂ “∞N

n“1 �̂
1:
n �̂1

n ´ N{2 and Ĝ “ ∞N
n“1 �̂

2:
n �̂2

n ´ N{2, which
respectively measure the red and green color charges. Be-
cause redness and greenness do not have convenient sym-
metry properties, it is more natural to use their difference
(which is purely within the SU(2) gauge symmetry, since
R̂´Ĝ

2 “ Q̂z
tot) and their sum (which is a global U(1) sym-

metry). We therefore define the baryon quantum number
of the model as B̂ “ R̂`Ĝ

2 “ 1
2

∞N
n“1 �̂

:
n�̂n ´ N{2 which

measures the matter-antimatter imbalance.
The existence of multiple conserved charges in the non-

Abelian theory has to be contrasted with the Abelian
Up1q case of quantum electrodynamics (QED), where the
electric charge is the only conserved quantity. In QED,
the total electric charge coincides with the baryon num-
ber B of the system [39], and the neutral charge con-
straint thus imposes the value of the matter-antimatter
imbalance to be zero. In other words, neutral gauge in-
variant states of QED must contain as many electrons as
positrons leading to meson-type singlet states only. On
the other hand, the constraint of neutral charge for the
SU(2) theory Q̂i

tot | y “ 0, @i does not enforce the value
of the baryon quantum number B, since these are differ-

VQE preparation of the baryon massb

x
1 2 3 4 5 0

0
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SU(2) “quark”

SU(2) “proton”

N = 4

1

2

3

4

5

6
a VQE circuit to prepare baryon and vacuum states

Exact baryon mass

Baryon mass (VQE)

FIG. 2. VQE calculation of a baryon. We variationally
simulate an effective eight sites chain with the experimental
circuit shown in a. The boxes represent single qubit gates.
Grey boxes are fixed gates while the color coding indicates
dependence from three variational parameters. Their exact
implementation changes depending on the combination of the
parameter values, which is automatically compiled from the
original circuit shown in Fig. 3. This takes into account the
coupling topology of the IBMQ Casablanca processor, which,
together with the qubit identification for the B “ 0 sector are
shown on the left. The circuit yields the mass of the baryon
(errorbars are smaller than markers), an SU(2)-“proton” (see
inset), for a range of x and m̃ “ 1 as explained in the main
text.

ent quantum numbers. Therefore, it is possible to con-
struct color neutral gauge invariant singlets with B ‰ 0,
which are forbidden in QED. While the states in the
B “ 0 sector are similar to the neutral states of QED,
the states in the sector with B ‰ 0 have no equivalent
in Abelian theories. In particular, we will refer to the
ground state in the sector with B “ 1 as a baryon state,
the ground state in B “ 0 will be the vacuum and the
first excited state will be called a meson state. A pictorial
comparison of a meson and a baryon is given in Fig. 1b.

Elimination of the gauge fields and qubit for-
mulation To study energy spectrum of the SU(2) the-
ory on a quantum computer, we map the lattice Hamil-
tonian in equation (1) to a qubit system. In one spatial
dimension and with open boundary conditions, the gauge
degrees of freedom can be integrated out [40–44] (see
Supplementary Information for details). This approach
eliminates redundant degrees of freedom and allows us
to simulate our target model with a minimal number of
qubits. As a second step, a Jordan-Wigner transforma-

21

FIG. 10. Two plaquettes with periodic boundary conditions and an arrow convention amenable to infinite extension in the
two-dimensional plane. Indices local to each end of each link characterize states in SU(3) e.g., the color isospin and hypercharge
indices.

previous algorithms, for example, Ref. [13].

Similar to the methods employed for the one-plaquette system, Gauss’s law can be explicitly satisfied in the global

wavefunctions by construction of the basis states. Using the dimensionality of the color irrep of each link, as shown in

Fig. 10, the basis states for the two-plaquette system are written as |�(R1,Q1,R2,R3,Q2,R4)i. The gauge invariant

lattice wavefunction for this two-plaquette system, as discussed in greater generality in Appendix A, is

|�(R1,Q1,R2,R3,Q2,R4)i =
1

dim(Q1) dim(Q2)

X

all

|R1, a, bi|Q1, c, di|R2, e, fi|R3, g, hi|Q2, i, ji|R4, k, `i

hR3, h, R̄1, a|Q̄2, ji�312 hR1, b, R̄3, g|Q̄1, di�131

hR4, `, R̄2, e|Q2, ii�422 hR2, f, R̄4, k|Q1, ci�241 , (34)

where |R, a, bi is a link-state in the electric basis and hRi, f,Rj , k|Qk, ci�ijk are SU(3) CG coe�cients.

The global wavefunctions of the two-plaquette system are formed from combinations of these basis states, consistent

with the global symmetries of the system such as: color-parity symmetry resulting from the sum of ⇤ + ⇤† in the

Hamiltonian, e.g., {Ri,Qi} $ {Ri,Qi}, translation invariance, and reflection symmetry. These symmetries lead to a

natural block-diagonalization of the Hamiltonian in these projected bases. Quantum numbers may be assigned to the

states in each block, ±1 for each of the symmetries in the case of two-plaquettes. In this section, we consider a global

basis in which dynamical quantum states are mapped to symmetry-projected configurations of the full two-plaquette

lattice. Two related local truncations in color space are used to explore the convergence of both local and global

truncations.

A. Two-Plaquette: {1,3,3} Local Truncation

In limiting the local link basis to color irreps {1,3,3} for the two-plaquette system without constraints and symmetries,

there are 36 independent basis states. Imposing Gauss’s law at each vertex reduces this number down to 27. Further

restricting to global singlet states, as is the strong coupling vacuum and preserved by the Hamiltonian, the dynamical

Hilbert space becomes 9 dimensional, which decomposes into sectors of dimensions (4, 2, 2, 1) under the discrete

symmetries of color parity and spatial translation. Focusing on the sector that contains the trivial vacuum, the basis

states in the ++ sector are,

| (133;++)
1 i = |�(1,1,1,1,1,1)i

| (133;++)
2 i =

1

2

⇥
|�(3,3,3,1,3,1)i+ |�(3,3,3,1,3,1)i+ |�(1,3,1,3,3,3)i+ |�(1,3,1,3,3,3)i

⇤

| (133;++)
3 i =

1
p
2

⇥
|�(3,1,3,3,1,3)i+ |�(3,1,3,3,1,3)i

⇤

24

circuit in Eq. (19), and the third can be implemented with the following circuit relation

ei(↵Ẑ⌦X̂+�X̂⌦Ẑ) =
H • H ei↵Ẑ H • H

ei�Ẑ
. (43)

The results of performing first order Trotter time steps with g = 1 beginning in the electric vacuum are shown in

Fig. 12. Two middle qubits were used to store the state of the system and, when the measurement error mitigation

is implemented through voting, the remaining three qubits were used to inform the post-selection described in Sec-

tion III B 1. As the results show, three Trotter steps are capable of reproducing the first maximum and minimum

in the evolution of the electric energy and calculations on the Athens quantum processor are in agreement with the

exact calculation.
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FIG. 12. The (trivial-) vacuum-to-vacuum persistence probability |h00| Û(t) |00i|2 (left panel) and the energy in the electric
field (right panel) of the two plaquette system in the color parity basis truncated locally at 3 and 3. Evolution is a 1st-order
Trotterization of the Hamiltonian in Eq. (39). Points correspond to quadratic extrapolations of results obtained from IBM’s
Athens quantum processor, with systematic and statistical uncertainties combined in quadrature.

B. Two-Plaquette: {1,3,3,8} Local Truncation

To further explore global wavefunctions and also to demonstrate a further complexity in such calculations, the dis-

cussion in Subsection IVA is here extended to include the 8 in the local link basis. The construction involves

an expanded basis that requires considering non-trivial multiplicities in the products of irreps, in particular in

8 ⌦ 8 = 27 � 10 � 10 � 8 � 8 � 1. Of the 46 states in this local basis, 109 of them satisfy Gauss’s law. Pro-

jecting further to the global color singlet states—the global color charge being a quantum number conserved by the

Hamiltonian—there are 41 distinct physical configurations potentially connected to the strong coupling vacuum.

These physical and global color singlet states combine into states with definite transformation properties under the

discrete symmetries of color parity, translation, and reflection, which is no longer redundant in this larger basis as

3 ⌦ 3 = 8 � 1 leads to configurations that can be odd under reflection. Focusing only on the + + + sector, the 15

independent states are,

| (1338;+++)
1 i = |�(1,1,1,1,1,1)i ,

| (1338;+++)
2a i =

1

2

⇥
|�(3,3,3,1,3,1)i+ |�(3,3,3,1,3,1)i+ |�(1,3,1,3,3,3)i+ |�(1,3,1,3,3,3)i

⇤
,

| (1338;+++)
2b i =

1
p
2

⇥
|�(3,1,3,3,1,3)i+ |�(3,1,3,3,1,3)i

⇤
,

| (1338;+++)
3 i =

1
p
2
[ |�(8,1,1,8,1,1)i+ |�(1,1,8,1,1,8)i ] ,

2

mentum vanish. In weak coupling, the magnetic con-
tributions dominate and a theory of dynamical loops
emerges. The angular momentum basis describes the
quantum state of a generic link by its irreducible repre-
sentation, j, and associated third-component projections
at the left and right end of the link in the 2 and 2̄ rep-
resentations, |j,m,m

0
i ⌘ |j,mi⌦ |j,m

0
i, respectively. In

one dimension, SU(2) lattice gauge theory can be spa-
tially discretized onto a string of plaquettes (see Fig. 1).
With periodic boundary conditions (PBCs), only three-
point vertices contribute to such a plaquette chain. To
form gauge singlets, components of the three links at each
vertex are contracted with an SU(2) Clebsch-Gordan co-
e�cient. The wavefunction at each vertex has the form

V ⇠

X

b,c,e

hj1, b, j2, e|q, ci |j1, a, bi ⌦ |q, c, di ⌦ |j2, e, fi , (3)

where indices b, c, and e are located at the vertex. By
focusing on a system with an even number of plaquettes,
matrix elements of the arbitrary plaquette operator may
be determined. The state of an even-length lattice in
one dimension with PBCs and with definite link angular
momenta is
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with jL+1 = j1, mL+1 = m1, and normalization N =Q
i(dim(qi))�1 with dim(q) = 2q + 1. Referring to the

plaquette string’s ladder structure, on links located as
rungs of the ladder, angular momentum values are la-
beled by q. Thus, a plaquette string is created by two
strings of j-type registers connected periodically by rungs
of q-type registers. The contraction with Clebsch-Gordan
coe�cients at each vertex ensures the local gauge singlet
structure required by Gauss’s law. The link operator acts
on the degrees of freedom at each end of a link and is a
source of j = 1/2 angular momentum,

Û↵� |j, a, bi =
X

�J

s
dim(j)

dim(J)
|J, a+ ↵, b+ �i

⇥ hj, a,
1

2
,↵|J, a+ ↵ihj, b,

1

2
,�|J, b+ �i , (5)

which contains non-vanishing contributions only for J =
j±

1
2 [59]. It follows that matrix elements of the plaquette

FIG. 1. (top) Diagram of the lattice distribution of
dlog2(2⇤j + 1)e-qubit registers and the action of ⇤̂ on SU(2)
plaquettes in one dimension. ⇤̂ operates on the four qubit
registers in the plaquette and is controlled by the four neigh-
boring qubit registers to enforce the Gauss’s law constraint.
(bottom) The plaquette operator with labeled angular mo-
mentum registers.

operator in one dimension are
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where the indices j
t,b
` , q`i, q`f , j

t,b
a , qri, qrf , and j

t,b
r are

used to indicate the j-values relevant for the single pla-
quette operator (as depicted in Fig. 1) and the brack-
ets indicate Wigner’s 6-j symbols. The four registers
j
t,b
`,r outside the plaquette are not modified by the ac-
tion of the plaquette operator. However, their inclusion
as control registers is necessary to maintain Gauss’s law.
The sums over alignment in each gauge-invariant space
yield a dramatically reduced Hilbert space to be mapped
onto a quantum device, characterized entirely by the |ji’s
(rather than the |j,m,m

0
i’s) incrementing naturally by

half-integers. The qubit representation of the periodic
plaquette string is shown on the top panel of Fig. 1, where
each link contains a dlog2(2⇤j + 1)e-qubit register with
⇤j the angular momentum truncation per link.
In the following, circuits are devised for the plaquette

operator with angular momentum truncation ⇤j = 1/2.
For time evolution beginning in the strong-coupling vac-
uum, the top and bottom j values are equivalent with this
cuto↵ due to SU(2) flux conservation. As a result, the
bottom j registers need not be mapped onto the quan-
tum device [94] and the plaquette operator reduces to a
five-qubit operator.
While matrix elements of the plaquette operator in the

physical space are critical, those in the unphysical space
are not. As long as the matrix elements mixing the two
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FIG. 4. (top) Expectation value of the electric energy contri-
bution of the first plaquette in the two-plaquette lattice with
PBCs and coupling g

2 = 0.2 computed on IBM’s Tokyo. The
dashed, dot-dashed, and thin gray lines are the NTrot = 1, 2, 3
Trotterized expectation values, while the thick gray line is the
exact time evolution. (bottom) Measured survival probability
to remain in the physical subspace. Uncertainties represent
statistical variation, as well as a systematic uncertainty esti-
mated from reproducibility measurements. The icons appear-
ing are defined in Ref. [41].

Real-time evolution of two plaquettes with PBCs (see
the right panel of Fig. 3) and truncation ⇤j = 1/2 has
been implemented on IBM’s quantum device Tokyo, se-
lected for its available connectivity of a four-qubit loop.
The top panel of Fig. 4 shows time-evolved expectation
values of the energy contributions from the first electric
plaquette calculated with one and two Trotter steps [95].
The electric contributions, being localized in their mea-
surement to the four-dimensional physical subspace, are
well determined after a small number of samples. In
contrast, measuring the energy contributions from the
magnetic Hamiltonian requires increased sampling due
to the operator’s natural representation in the Pauli-X
basis of the q`, ja, and qr qubit registers—distributing the
wavefunction’s amplitude throughout the Hilbert space.
Results have been corrected for measurement error by
the constrained inversion of a 16-dimensional calibration
matrix informed by preparation of each of the 16 com-
putational basis states prior to calculation. The result-
ing probabilities are linearly extrapolated in the presence
of CNOT gates, post-selected within the gauge-invariant
space, and renormalized. The linear extrapolation is in-
formed by r = 1, 2, where r = 1 is the circuit in Fig. 3
and r = 2 stochastically inserts a pair of CNOTs ac-
companying each of the three CNOTs either in the first
or second half of the plaquette operator. The combined

noise and gate fidelity of the device were found to limit
the ability to extrapolate further in CNOT noise, even
with a single Trotter step. It can be seen that these er-
ror mitigation techniques have allowed calculation of the
electric energy associated with the SU(2) gauge field to
the precision obtained after a single Trotter step.
It is important to determine the feasibility of retaining

gauge-invariant Hilbert spaces with near-term quantum
hardware. For our calculations on IBM’s Tokyo quan-
tum device, before CNOT extrapolation, the (NTrot, r) =
(1, 1) measurements were found to remain in the gauge
invariant space with a survival population of ⇠ 45%, as
shown in the bottom panel of Fig. 4. After linear extrap-
olation in the probabilities, this was increased to ⇠ 65%,
with survival population decreasing as evolution time in-
creases. The survival population for NTrot = 2 was found
to be ⇠ 25%, consistent with loss of quantum coherence
of a four-dimensional physical space embedded onto four
qubits, precluding CNOT extrapolation. This observable
is a diagnostic of the calculation. As it approaches the
decorrelated limit (25%), CNOT extrapolations become
less reliable leading to the underestimate of systematic
uncertainties in Fig. 4. Because neither the proposed
qubit representation, nor the subsequent Trotterization,
produce gauge-variant error contributions, the observed
decay of population in the physical subspace is a mea-
sure of the device’s ability to robustly isolate Hilbert
subspaces. This is likely to be an essential capability for
evolving lattice gauge theories and other systems with
conserved quantities, as well as for quantum error cor-
rection.
When increasing ⇤j , the plaquette operator must be

calculated and designed over 8 qubit registers, each con-
taining dlog2 (2⇤j + 1)e qubits. The classical compu-
tational resources required to define this operator with
Eq. (6) scales with the number of unique non-zero ma-
trix elements, which is polynomial in ⇤j . When con-
structing the time evolution operator for ⇤j > 1/2, the
combination of Trotterization and Pauli decomposition of
the 4-register operators in j`,r-controlled sectors gener-
ically generates interactions breaking gauge invariance
[56, 69, 96]. The breaking of gauge invariance will be im-
portant to control if this decomposition is used in future
calculations.
Developing quantum computation capabilities for non-

Abelian gauge field theories is a major objective of nu-
clear physics and high-energy physics research. One of
the challenges facing such calculations is that the map-
ping of the gauge theory onto a discretized lattice involves
a digitization of the gauge fields. We have presented cal-
culations of the dynamics of a one-dimensional SU(2) pla-
quette string with implementation on IBM’s Q Experi-
ence superconducting hardware. This was made feasible
by an improved mapping of the angular momentum ba-
sis states describing link variables. Our design of the pla-
quette operator for digital quantum devices requires local
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TO SUMMARIZE:

Theorists supporting the research program in searches for 
new physics in rare processes in nucleon and nuclei include 
high-energy physicists building the high-scale models, QCD 
physicists matching high-scale models to hadronic-scale 
quantities, and nuclear physicists matching the hadronic 
quantities to nuclear-scale quantities for experiment. The 
synergy among these communities will be essential.

Lattice field theorists have long identified the impactful 
calculations in this area and are pushing the frontiers of 
exploratory as well as mature full-scale computations of 
quantities of relevance to this program.

The quantities of interest are a set of local (and bi-local) 
nucleon and nuclear matrix elements associated with SM or 
beyond the SM quark- and gluon-level currents. Few percent 
uncertainties in nucleon matrix elements and <50% 
uncertainties in few-nucleon matrix elements are achievable 
goals of this program over the next decade.

To expedite the computations and combat signal-to-noise 
and sign problems associated with finite-density systems 
and/or dynamical quantities, lattice field theorists are 
exploring new computational paradigms such as machine 
learning and quantum computing.

Physics

CP Violation and Neutrino 
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Baryon Number Violation and 
Grand Unified Theories

Baryon Number minus Lepton 
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Lepton  
Flavor Violation

Lepton  
Number Violation

CP Violation and Baryon 
Asymmetry in Universe

Dark Matter and New Physics 
Searches
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