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Brief history
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Early mentions of Muon Colliders date back to 1960s with early
design studies in 1990s-2000s

Between 2011-2016 the Muon Accelerator Program (MAP) was
formed to address key feasibility issues of a Muon Collider
— Focused on a proton-driver based solution and considered a staged approach.

— End-to-end design for a Neutrino Factory & a 125 GeV Higgs Factory.
Considered colliders at 1.5, 3 and 6 TeV

In 2021, CERN Council has charged the EU Laboratory Directors
Group to develop the Accelerator R&D Roadmap for next decade:

« Several community meetings organized with the goal to define the needed muon
R&D with deliverables and demonstrators. Strong participation from the US

Muon Colliders are now part of the European Accel. R&D Roadmap
« Formation of the International Muon Collider Collaboration (IMCC)
« Consider a 10+ TeV collider
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Muon Collider Forum

* Recently, there has been strong interest in Muon Colliders in the US
HEP community

* In 2020, the Snowmass EF+AF+TF have created a Muon Collider
Forum to provide input to Snowmass on the Muon Collider (MuC)

* The intention of this informal organization is to not compete with other efforts
but to have a US driven component.

» Build a strong collaboration between the particle physics and accelerator
communities for MuC research and make a strong physics case

« The forum has been very active:
« Monthly meetings and dedicated workshops
« 160 e-mail subscribers, 50-100 regular participants
« 412 registrants and ~200 participants in the Muon Collider Agora
* Inform community about the past and current developments

« Exchange knowledge and ideas 2t Fermilab
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https://snowmass21.org/energy/muon_forum

Muon Collider Forum Report

« Muon Collider Forum Report — a coherent vision for muon colliders
from the US/ Snowmass perspective

« Highlights of physics developments in theory, detector and accelerators

« lIdentify key areas where US can provide critical contributions to the global MC
R&D efforts.

» Present a “US Site-Filler" as one of options for hosting a MC in the future.
« The primary focus of the report is a 10 TeV physics program

« Emphasize potential US role for R&D, explore US siting for a MC,
and a vision of a US program by the next Snowmass

* Now public:
https://showmass21.org/energy/muon forum

 ~ 130 authors, 50% Early Career scientists

2% Fermilab
5 7119/2022


https://snowmass21.org/energy/muon_forum

Muon Collider sustainability

FNAL site
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A MC would offer a precision probe of fundamental interactions, in a
smaller footprint as compared to electron or proton colliders
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Most power efficient machine at high energies
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Energy Frontier Report — Resources and Timelines
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Five year period starting in 2025

Prioritize HL-LHC physics program,

Establish a targeted e+e- Higgs Factory detector R&D for US participation in a global
collider

Develop an initial design for a first stage TeV-scale MuC in the US (pre CDR)
Support critical detector R&D towards EF muti-TeV colliders

Five year period starting in 2030

Continue strong support for HL-LHC program
Support construction of an e+e- Higgs Factory

Demonstrate principal risk mitigation and deliver CDR for a first stage TeV-
scale MuC

After 2035

Evaluate continuing HL-LHC program to the construction of archival measurements
Begin support the physics program of the Higgs Factories
Demonstrate readiness to construct and deliver TDR for a first TeV-scale MuC

Ramp up funding support for detector R&D for multi-TeV colliders
2% Fermilab
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IMCC Timeline
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Required key accelerator technologies

10

High power proton driver development
* 2ns, 8 GeV bunches up to 4 MW with a 15 Hz rep. rate

Target system capable of managing large instant power

« 20 T capture solenoid with large bore that can withstand radiation

Cooling system to reduce 6D emittance by 6 orders of magnitude
« Demand for high B-fields @ 30-40 T range

 Placement of NC RF cavities within multi-T B-fields

Acceleration scheme towards TeV scale energy before decay
« Fast ramping magnets to deliver ramp times of several T on a ms timescale

Collider ring
 12-16 T dipole magnets with a 150 mm aperture
* Neutrino flux mitigation system

An important outcome of MAP was that progress in each of the above
areas was sufficient to suggest that there exist a viable path forward
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Feasibility: lonization Cooling

« Sufficient progress was made in all ionization cooling section
designs over the last years

« Design of cooling lattices in place with realistic assumptions [ref]

« They came only by a factor of two to the MuC requirement [ref]. With latest
technology considerable improvements are expected (next slide)

 lonization cooling has been demonstrated in two occasions

« MICE demonstrated transverse cooling with different absorbers [ref]

 Fermilab demonstrated longitudinal cooling for the Muon g-2 Experiment [ref]

« Full demo of ionization cooling is a key part of the proposed R&D program
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https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.031003
https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.091001
https://www.nature.com/articles/s41586-020-1958-9
https://journals.aps.org/prab/references/10.1103/PhysRevAccelBeams.22.053501

Feasibility: RF cavitie in magnetic field

Two promising solutions for sustaining cavity gradient in B-fields

» Use-low density materials (like Be) to reduce damage from field-emission [ref]

Both techniques have been experimentally verified with a 3 T field

« Use high-pressure gas inside the cavity [ref]
 No degradation in achievable gradient for the applied B-field

Demo of 50
MV/m at O T and
3T with vacuum

Demo of 50
MV/matO T and
3T with gas
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https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.072001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.184802

Feasibility: Magnet technology

Cooling: Designs consider B-fields in the 30-40 T range
« This field has been demonstrated with commercial MRI 29 T magnets

 Record 32 T achieved at NHMFL. A funded proposal to design purely SC40 T
magnet in place [ref]

Acceleration: Designs considered rapid cycling synchrotrons with
fast cycling magnets

« Demonstrated record ramp rate of 300 T/s with HTS — upgrades for higher
fields proposed [ref].

Col. Ring: 6 TeV designs consider >100 mm bore, 16 T arc dipoles
« US- MDP plans In 4-5 years demonstration of a 12-15 T (120 mm) Nb3Sn dipole

Design studie

N
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magnet developments >
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https://doi.org/10.1109/TASC.2020.2969642
https://lss.fnal.gov/archive/2021/conf/fermilab-conf-21-605-ad.pdf

Feasibility: Collider Ring design & neutrino flux

« Lattice designs for a 3 and 6 TeV Colliders are in place
« Optics and magnet parameters have been specified [ref]

* Addressed the challenges associated with radiation loads on magnets as well
as particle background in the collider detector [ref]

 The decay of muons in the collider ring produces a dense flux of
neutrinos at significant distance from the collider

« Several solutions in place to mitigate the problem: Examples include situating
the collider at ~100 m depth [ref] or move lattice overtime (IMCC approach)

[ref].

« These solutions illustrate that neutrino flux can be manageable, similar to LHC.

M'm Q e = * - “T C L L D L e . 6 TeV # Fermilab
— design Neutrino Flux around Muon Colliders

and 7 Ways to Mitigate it

2% Fermilab
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https://iopscience.iop.org/article/10.1088/1748-0221/13/11/P11002
https://accelconf.web.cern.ch/ipac2018/doi/JACoW-IPAC2018-WEPML026.html
https://indico.fnal.gov/event/52701/contributions/231917/attachments/151433/195661/Neutrino_flux_mitigation_Mokhov_Jan27_2022.pdf
https://indico.fnal.gov/event/52701/

Feasibility: Target station

« MAP considered 2-4 MW liquid mercury or Galliumjets @ 20 T

« MERIT exp. demonstrated liquid Mercury jet in high field solenoid. Technology is
OK for beam power up to 8 MW but some safety concerns [ref]

« As an alternative IMCC is exploring a Graphite target concept
« 2 MW target could be acceptable, opening a path for solid targets [ref]

« Mature technology for ~ 1 MW targets @ Fermilab with plans to expand > 2 MW
for its neutrino program in the following years

« SC solenoid design very demanding and needs R&D

« Experience with ITER center solenoid can be used — size and field strength are
comparable.

Present Target Concept

ITER 13T
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Tungsten beads, He gas cooled
Mercury collection pool
With splash mitigator
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https://accelconf.web.cern.ch/e08/papers/wepp169.pdf
https://ipac2022.vrws.de/papers/thpotk052.pdf

Beam Induced Background

* Beam background is one of the unique features/challenges of Muon Colliders

* Main Source of Beam Induced Background (BIB) are showers produced by electrons
originating in beam muon decays

» Muons decay with an average lifetime of 2.2 - 107° seconds at rest, at 1/s = 3 TeV they live
for about 3.1 - 1072 seconds

* The challenge is to separate collision particles from the BIB

[ Electron/Positron

M Proten
I Pion
[ Muon
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Detectors: Key Developments
1-MeY-neq fluence for one year of opveration (20(.).days)

+ Detector Environment:
Radiation levels similar to HL-LHC and much smaller
than at the future hadron colliders

v

+ Beam induced background evolution

studied: -
v The BIB in detector volume is approximately constant C A o Ui
with COM energy (even without MDI optimization) > o e oAy inthe BOAL
hlgher energles pOSSIbIe 1001 i VS =1.5 TeV Circular Muon Collider
+ Detector technologies have been rapidly ey p—
advancing (in large due to HL-LHC needs): X
v Particle Flow detectors with excellent position, energy E”
and timing resolution g
v Advanced on- and off- detector data processing 107 s o2
v Using reconstruction from pp makes a huge difference B 05 0in
* v 0 0j2 Coll?im Product Ef(:;?iency 0j8 1t0
$& Fermilab
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Preliminary Detector Performance

+ Reconstruction feasibility demonstrated using simple algorithms

v

v Performance similar to LHC is already achieved. Many avenues for improvements

+ Fast simlation performance validated against full simulation using a set of
benchmark physics scenarios ( H->bb cross-certinn NDark Matter cearch)
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Efficiency of reconstructing tracks FastSim: 0.73% vs Eullsim: 0.75%
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Moving forward

« No fundamental show-stoppers have been identified.

» Nevertheless, engineering challenges exist in many aspects of the design and
targeted R&D is necessary in order to make further engineering and design
progress

 Cooling can substantially relax proton driver and neutrino flux specs

« Demonstrations are required for both the muon source and the high-
energy complex
« Demonstration of radiation and shock resistance of materials

« Demonstration of high field muti-Tesla magnets for muon production, cooling,
acceleration and collision

« Demonstration of high gradient, normal conducting rf cavities for cooling and
power-efficient superconducting rf for acceleration

« Demonstration of an integrated ionization cooling module as an engineering
prototype

« IMCC is exploring demonstrator sites internationally
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A path for a Muon Collider at Fermilab

A conceptual design is in place
Proton source

* PIP-Il upgrade -> Target
lonization cooling channel
Acceleration (3 stages)

* Linac + Recirculating Linac — 65 GeV

* Rapid Cycling Synchrotrons #1, #2 — 1 TeV|,

(Tevatron size)
« RCS #3 — 5 TeV (site filler)

10 TeV collider
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* Collider radius: 1.65 km

Staging @125 GeV (Higgs), 1 TeV, and 3 TeV possible

Fermilab new formed Future Colliders Group is actively exploring filler option
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https://indico.fnal.gov/event/52701/contributions/231910/attachments/151345/195514/22sitefillerfinal.pdf

Summary

« Physics & technology landscape has significantly changed since 2013

» Explosion of interest in muon colliders as indicated by the number of publications,
activities in IMCC, Muon Forum etc

» OQutstanding physics program

« Minimum muon collider accelerator and detector requirements are within reach or
technologically available

« There has been a recent considerable growth of interest about MuC
from the particle physics community:
« Significant growth of related publications & related workshops

 Formation of the IMCC

* We are asking Snowmass/ P5 to support a MuC program in the US
— Enable collaboration with IMCC

— Provide funding for accelerator and detector R&D

— Further develop the site-filler concept for the next Snowmass process
2% Fermilab
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